30,419 research outputs found
Field-free molecular orientation by THz laser pulses at high temperature
We investigate to which extend a THz laser pulse can be used to produce
field-free molecular orientation at high temperature. We consider laser pulses
that can be implemented with the state of the art technology and we show that
the efficiency of the control scheme crucially depends on the parameters of the
molecule. We analyze the temperature effects on molecular dynamics and we
demonstrate that, for some molecules, a noticeable orientation can be achieved
at high temperature.Comment: 13 pages, 7 figure
Malmheden's theorem revisited
In 1934 H. Malmheden discovered an elegant geometric algorithm for solving
the Dirichlet problem in a ball. Although his result was rediscovered
independently by Duffin 23 years later, it still does not seem to be widely
known. In this paper we return to Malmheden's theorem, give an alternative
proof of the result that allows generalization to polyharmonic functions and,
also, discuss applications of his theorem to geometric properties of harmonic
measures in balls in Euclidean spaces
Photoassociation adiabatic passage of ultracold Rb atoms to form ultracold Rb_2 molecules
We theoretically explore photoassociation by Adiabatic Passage of two
colliding cold ^{85}Rb atoms in an atomic trap to form an ultracold Rb_2
molecule. We consider the incoherent thermal nature of the scattering process
in a trap and show that coherent manipulations of the atomic ensemble, such as
adiabatic passage, are feasible if performed within the coherence time window
dictated by the temperature, which is relatively long for cold atoms. We show
that a sequence of ~2*10^7 pulses of moderate intensities, each lasting ~750
ns, can photoassociate a large fraction of the atomic ensemble at temperature
of 100 microkelvin and density of 10^{11} atoms/cm^3. Use of multiple pulse
sequences makes it possible to populate the ground vibrational state. Employing
spontaneous decay from a selected excited state, one can accumulate the
molecules in a narrow distribution of vibrational states in the ground
electronic potential. Alternatively, by removing the created molecules from the
beam path between pulse sets, one can create a low-density ensemble of
molecules in their ground ro-vibrational state.Comment: RevTex, 23 pages, 9 figure
Overlapping resonances in the control of intramolecular vibrational redistribution
Coherent control of bound state processes via the interfering overlapping
resonances scenario [Christopher et al., J. Chem. Phys. 123, 064313 (2006)] is
developed to control intramolecular vibrational redistribution (IVR). The
approach is applied to the flow of population between bonds in a model of
chaotic OCS vibrational dynamics, showing the ability to significantly alter
the extent and rate of IVR by varying quantum interference contributions.Comment: 10 pages, 7 figure
Incomplete Photonic Bandgap as Inferred from the Speckle Pattern of Scattered Light Waves
Motivated by recent experiments on intensity correlations of the waves
transmitted through disordered media, we demonstrate that the speckle pattern
from disordered photonic crystal with incomplete band-gap represents a
sensitive tool for determination the stop-band width. We establish the
quantitative relation between this width and the {\em angualar anisotropy} of
the intensity correlation function.Comment: 6 pages, 3 figure
Automatic structures, rational growth and geometrically finite hyperbolic groups
We show that the set of equivalence classes of synchronously
automatic structures on a geometrically finite hyperbolic group is dense in
the product of the sets over all maximal parabolic subgroups . The
set of equivalence classes of biautomatic structures on is
isomorphic to the product of the sets over the cusps (conjugacy
classes of maximal parabolic subgroups) of . Each maximal parabolic is a
virtually abelian group, so and were computed in ``Equivalent
automatic structures and their boundaries'' by M.Shapiro and W.Neumann, Intern.
J. of Alg. Comp. 2 (1992) We show that any geometrically finite hyperbolic
group has a generating set for which the full language of geodesics for is
regular. Moreover, the growth function of with respect to this generating
set is rational. We also determine which automatic structures on such a group
are equivalent to geodesic ones. Not all are, though all biautomatic structures
are.Comment: Plain Tex, 26 pages, no figure
Generic Quantum Ratchet Accelerator with Full Classical Chaos
A simple model of quantum ratchet transport that can generate unbounded
linear acceleration of the quantum ratchet current is proposed, with the
underlying classical dynamics fully chaotic. The results demonstrate that
generic acceleration of quantum ratchet transport can occur with any type of
classical phase space structure. The quantum ratchet transport with full
classical chaos is also shown to be very robust to noise due to the large
linear acceleration afforded by the quantum dynamics. One possible experiment
allowing observation of these predictions is suggested.Comment: 4 pages, 4 figure
Implementing Quantum Gates by Optimal Control with Doubly Exponential Convergence
We introduce a novel algorithm for the task of coherently controlling a
quantum mechanical system to implement any chosen unitary dynamics. It performs
faster than existing state of the art methods by one to three orders of
magnitude (depending on which one we compare to), particularly for quantum
information processing purposes. This substantially enhances the ability to
both study the control capabilities of physical systems within their coherence
times, and constrain solutions for control tasks to lie within experimentally
feasible regions. Natural extensions of the algorithm are also discussed.Comment: 4+2 figures; to appear in PR
A Semi-classical calculus of correlations
The method of passive imaging in seismology has been developped recently in
order to image the earth crust from recordings of the seismic noise. This
method is founded on the computation of correlations of the seismic noise. In
this paper, we give an explicit formula for this correlation in the
"semi-classical" regime. In order to do that, we define the power spectrum of a
random field as the ensemble average of its Wigner measure, this allows
phase-space computations: the pseudo-differential calculus and the ray theory.
This way, we get a formula for the correlation of the seismic noise in the
semi-classcial regime with a source noise which can be localized and non
homogeneous. After that, we show how the use of surface guided waves allows to
image the earth crust.Comment: To appear in a special issue "Imaging and Monitoring with Seismic
Noise" of the series "Comptes Rendus G\'eosciences", from the French
"Acad\'emie des sciences
- …