45,129 research outputs found
Density Variations over Subparsec Scales in Diffuse Molecular Gas
We present high-resolution observations of interstellar CN, CH, CH^{+},
\ion{Ca}{1}, and \ion{Ca}{2} absorption lines toward the multiple star systems
HD206267 and HD217035. Substantial variations in CN absorption are observed
among three sight lines of HD206267, which are separated by distances of order
10,000 AU; smaller differences are seen for CH, CH^{+}, and \ion{Ca}{1}. Gas
densities for individual velocity components are inferred from a chemical
model, independent of assumptions about cloud shape. While the component
densities can differ by factors of 5.0 between adjacent sightlines, the
densities are always less than 5000 cm^{-3}. Calculations show that the derived
density contrasts are not sensitive to the temperature or reaction rates used
in the chemical model. A large difference in the CH^{+} profiles (a factor of 2
in column density) is seen in the lower density gas toward HD217035.Comment: 9 pages, 2 figures. Accepted for publication in ApJ
Future wave climate over the west-European shelf seas
In this paper, we investigate changes in the wave climate of the west-European shelf seas under global warming scenarios. In particular, climate change wind fields corresponding to the present (control) time-slice 1961â2000 and the future (scenario) time-slice 2061â2100 are used to drive a wave generation model to produce equivalent control and scenario wave climate. Yearly and seasonal statistics of the scenario wave climates are compared individually to the corresponding control wave climate to identify relative changes of statistical significance between present and future extreme and prevailing wave heights. Using global, regional and linked globalâregional wind forcing over a set of nested computational domains, this paper further demonstrates the sensitivity of the results to the resolution and coverage of the forcing. It suggests that the use of combined forcing from linked global and regional climate models of typical resolution and coverage is a good option for the investigation of relative wave changes in the region of interest of this study. Coarse resolution global forcing alone leads to very similar results over regions that are highly exposed to the Atlantic Ocean. In contrast, fine resolution regional forcing alone is shown to be insufficient for exploring wave climate changes over the western European waters because of its limited coverage. Results obtained with the combined globalâregional wind forcing showed some consistency between scenarios. In general, it was shown that mean and extreme wave heights will increase in the future only in winter and only in the southwest of UK and west of France, north of about 44â45° N. Otherwise, wave heights are projected to decrease, especially in summer. Nevertheless, this decrease is dominated by local wind waves whilst swell is found to increase. Only in spring do both swell and local wind waves decrease in average height
Valence bond solid order near impurities in two-dimensional quantum antiferromagnets
Recent scanning tunnelling microscopy (STM) experiments on underdoped
cuprates have displayed modulations in the local electronic density of states
which are centered on a Cu-O-Cu bond (Kohsaka et. al., cond-mat/0703309). As a
paradigm of the pinning of such bond-centered ordering in strongly correlated
systems, we present the theory of valence bond solid (VBS) correlations near a
single impurity in a square lattice antiferromagnet. The antiferromagnet is
assumed to be in the vicinity of a quantum transition from a magnetically
ordered Neel state to a spin-gap state with long-range VBS order. We identify
two distinct classes of impurities: i) local modulation in the exchange
constants, and ii) a missing or additional spin, for which the impurity
perturbation is represented by an uncompensated Berry phase. The `boundary'
critical theory for these classes is developed: in the second class we find a
`VBS pinwheel' around the impurity, accompanied by a suppression in the VBS
susceptibility. Implications for numerical studies of quantum antiferromagnets
and for STM experiments on the cuprates are noted.Comment: 41 pages, 6 figures; (v2) Minor changes in terminology, added
reference
Hierarchical ResNeXt Models for Breast Cancer Histology Image Classification
Microscopic histology image analysis is a cornerstone in early detection of
breast cancer. However these images are very large and manual analysis is error
prone and very time consuming. Thus automating this process is in high demand.
We proposed a hierarchical system of convolutional neural networks (CNN) that
classifies automatically patches of these images into four pathologies: normal,
benign, in situ carcinoma and invasive carcinoma. We evaluated our system on
the BACH challenge dataset of image-wise classification and a small dataset
that we used to extend it. Using a train/test split of 75%/25%, we achieved an
accuracy rate of 0.99 on the test split for the BACH dataset and 0.96 on that
of the extension. On the test of the BACH challenge, we've reached an accuracy
of 0.81 which rank us to the 8th out of 51 teams
The effect of electromechanical coupling on the strain in AlGaN/GaN heterojunction field effect transistors
The strain in AlGaN/GaN heterojunction field-effect transistors (HFETs) is
examined theoretically in the context of the fully-coupled equation of state
for piezoelectric materials. Using a simple analytical model, it is shown that,
in the absence of a two-dimensional electron gas (2DEG), the out-of-plane
strain obtained without electromechanical coupling is in error by about 30% for
an Al fraction of 0.3. This result has consequences for the calculation of
quantities that depend directly on the strain tensor. These quantities include
the eigenstates and electrostatic potential in AlGaN/GaN heterostructures. It
is shown that for an HFET, the electromechanical coupling is screened by the
2DEG. Results for the electromechanical model, including the 2DEG, indicate
that the standard (decoupled) strain model is a reasonable approximation for
HFET calculataions. The analytical results are supported by a self-consistent
Schr\"odinger-Poisson calculation that includes the fully-coupled equation of
state together with the charge-balance equation.Comment: 6 figures, revte
Photoemission Spectroscopy of Magnetic and Non-magnetic Impurities on the Surface of the BiSe Topological Insulator
Dirac-like surface states on surfaces of topological insulators have a chiral
spin structure that suppresses back-scattering and protects the coherence of
these states in the presence of non-magnetic scatterers. In contrast, magnetic
scatterers should open the back- scattering channel via the spin-flip processes
and degrade the state's coherence. We present angle-resolved photoemission
spectroscopy studies of the electronic structure and the scattering rates upon
adsorption of various magnetic and non-magnetic impurities on the surface of
BiSe, a model topological insulator. We reveal a remarkable
insensitivity of the topological surface state to both non-magnetic and
magnetic impurities in the low impurity concentration regime. Scattering
channels open up with the emergence of hexagonal warping in the high-doping
regime, irrespective of the impurity's magnetic moment.Comment: 5 pages, 4 figure
Direct visualization of iron sheath shielding effect in MgB_2 superconducting wires
Local magneto-optical imaging and global magnetization measurement techniques
were used in order to visualize shielding effects in the superconducting core
of MgB_2 wires sheathed by ferromagnetic iron (Fe). The magnetic shielding can
provide a Meissner-like state in the superconducting core in applied magnetic
fields up to ~1T. The maximum shielding fields are shown to correlate with the
saturation fields of magnetization in Fe-sheaths. The shielding has been found
to facilitate the appearance of an overcritical state, which is capable of
achieving a critical current density (J_c) in the core which is larger than J_c
in the same wire without the sheath by a factor of ~2. Other effects caused by
the magnetic interaction between the sheath and the superconducting core are
discussed.Comment: 4 pages, 3 figure
- âŠ