357 research outputs found
Chemorheology of reactive systems: Finite element analysis
The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems
Finite element analysis of nonisothermal polymer processing operations
A finite element formulation for the analysis of polymer processing is presented and its use in some typical situation including entry flow, transient Couette flow, and the Graetz (forced convection) problem is illustrated. The element formulations are constructed on the premise that momentum convection can be neglected (polymer melt flows typically have very low Reynolds' numbers), but that convective heat transfer may be significant (high Peclet numbers). Nonisothermal effects are considered important in polymer processing, due in part to the significant heating which may occur due to viscous dissipation, and also to the very strong influence of temperature on fluid viscosity. The flow is treated as Newtonian with the flow field being coupled to the heat transfer equation only through the viscous heat generation
Anomalous giant piezoresistance in AlAs 2D electrons with anti-dot lattices
An AlAs two-dimensional electron system patterned with an anti-dot lattice
exhibits a giant piezoresistance (GPR) effect, with a sign opposite to the
piezoresistance observed in the unpatterned region. We trace the origin of this
anomalous GPR to the non-uniform strain in the anti-dot lattice and the
exclusion of electrons occupying the two conduction band valleys from different
regions of the sample. This is analogous to the well-known giant
magnetoresistance (GMR) effect, with valley playing the role of spin and strain
the role of magnetic field.Comment: 4 figures, submitted for publicatio
Numerical analysis of projectile impact in woven texile structures
Computer codes were developed for simulating the dynamic fracture and viscoelastic constitutive response due to stress wave interaction and reflections caused by ballistic impact on woven textiles. The method, which was developed for use in the design and analysis of protection devices for personnel armor, has potential for use in studies of rotor blade burst containment at high velocity. Alterations in coding required for burst containment problems are discussed
Finite element modeling of nonisothermal polymer flows
A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments
Evaluating Acute Changes in Joint Range-of-motion using Self-myofascial Release, Postural Alignment Exercises, and Static Stretches
International Journal of Exercise Science 6(4) : 310-319, 2013. This study was designed to compare the acute effect of self-myofascial release (SMR), postural alignment exercises, and static stretching on joint range-of-motion. Our sample included 27 participants (n = 14 males and n = 13 females) who had below average joint range-of-motion (specifically a sit-and-reach score of 13.5 inches [34.3 cm] or less). All were university students 18–27 years randomly assigned to complete two 30–40-minute data collection sessions with each testing session consisting of three sit-and-reach measurements (which involved lumbar spinal flexion, hip flexion, knee extension, and ankle dorsiflexion) interspersed with two treatments. Each treatment included foam-rolling, postural alignment exercises, or static stretching. Participants were assigned to complete session 1 and session 2 on two separate days, 24 hours to 48 hours apart. The data were analyzed so carryover effects could be estimated and showed that no single acute treatment significantly increased posterior mean sit-and-reach scores. However, significant gains (95% posterior probability limits) were realized with both postural alignment exercises and static stretching when used in combination with foam-rolling. For example, the posterior means equaled 1.71 inches (4.34 cm) when postural alignment exercises were followed by foam-rolling; 1.76 inches (4.47 cm) when foam-rolling was followed by static stretching; 1.49 inches (3.78 cm) when static stretching was followed by foam-rolling; and 1.18 inches (2.99 cm) when foam-rolling was followed by postural alignment exercises. Our results demonstrate that an acute treatment of foam-rolling significantly increased joint range-of-motion in participants with below average joint range-of-motion when combined with either postural alignment exercises or static stretching
FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents.
Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge. GBM survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome
Aberrant regulation of RANKL/OPG in women at high risk of developing breast cancer
Breast cancer is the most common female cancer, affecting approximately one in eight women during their lifetime in North America and Europe. Receptor Activator of NF-kB Ligand (RANKL), its receptor RANK and the natural antagonist osteoprotegerin (OPG) are essential regulators of bone resorption. We have initially shown that RANKL/RANK are essential for hormone-driven mammary epithelial proliferation in pregnancy and RANKL/RANK have been implicated in mammary stem cell biology. Using genetic mouse-models, we and others identified the RANKL/RANK system as a key regulator of sex hormone, BRCA1-mutation, and oncogene-driven breast cancer and we proposed that RANKL/RANK might be involved in the initiation of breast tumors. We now report that in postmenopausal women without known genetic predisposition, high RANKL and progesterone serum levels stratify a subpopulation of women at high risk of developing breast cancer 12-24 months before diagnosis (5.33-fold risk, 95%CI 1.5-25.4; P=0.02). In women with established breast cancer, we demonstrate that RANKL/OPG ratios change dependent on the presence of circulating tumor cells (CTCs). Finally, we show in a prospective human breast cancer cohort that alterations in RANKL/OPG ratios are significantly associated with breast cancer manifestation. These data indicate that the RANKL/RANK/OPG system is deregulated in post-menopausal women at high risk for breast cancer and in women with circulating tumor cells. Thus, serum levels of RANKL/OPG are potentially indicative of predisposition and progression of breast cancer in humans. Advancement of our findings towards clinical application awaits prior validation in independent patient cohorts
Exploring the Social Validity and Diffusion Potential of Common Naturalistic Developmental Behavioral Intervention Strategies Implemented in Community Preschools
It is imperative that researchers include the perspectives from key voices regarding early support practices, yet very few studies have included direct assessment of autistic individuals and parents of young autistic children. Despite emerging evidence of effectiveness of naturalistic developmental behavioral intervention (NDBI) strategies, it is currently unknown whether autistic adults and parents of autistic individuals know about NDBI and if they view NDBI strategies as socially valid practice. We aimed to explore the perceptions of autistic adults and parents of young autistic children regarding the social validity of NDBI strategies implemented in community preschool classrooms and their dissemination potential. We conducted a convergent mixed methods research design to collect quantitative survey data and qualitative semi-structured interview data. We received survey responses from 33 autistic adults and 37 parents of young autistic children and interviewed 12 autistic adults and 12 parents of young autistic children. We conducted a series of paired samples and independent samples t-tests to compare perceptions between groups and thematic analysis to analyze qualitative data. Results indicated high levels of social validity for NDBI across both groups of participants and the need for dissemination of NDBI. Agreement between autistic adults and parents of young autistic children on the social validity of NDBI and recommendations for dissemination are promising preliminary findings that NDBI researchers and practitioners may draw upon when engaging in collaborative support planning and participatory research efforts
The degree of segmental aneuploidy measured by total copy number abnormalities predicts survival and recurrence in superficial gastroesophageal adenocarcinoma
Background: Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC. Methods: We quantified copy number changes in 41 superficial EAC using Affymetrix SNP 6.0 arrays. We identified recurrent chromosomal gains and losses and calculated the total copy number abnormality (CNA) count for each tumor as a measure of aneuploidy. We correlated CNA count with overall survival and time to first recurrence in univariate and multivariate analyses. Results: Recurrent segmental gains and losses involved multiple genes, including: HER2, EGFR, MET, CDK6, KRAS (recurrent gains); and FHIT, WWOX, CDKN2A/B, SMAD4, RUNX1 (recurrent losses). There was a 40-fold variation in CNA count across all cases. Tumors with the lowest and highest quartile CNA count had significantly better overall survival (p = 0.032) and time to first recurrence (p = 0.010) compared to those with intermediate CNA counts. These associations persisted when controlling for other prognostic variables. Significance: SNP arrays facilitate the assessment of recurrent chromosomal gain and loss and allow high resolution, quantitative assessment of segmental aneuploidy (total CNA count). The non-monotonic association of segmental aneuploidy with survival has been described in other tumors. The degree of aneuploidy is a promising prognostic biomarker in a potentially curable form of EAC. © 2014 Davison et al
- …
