712 research outputs found

    Mode-selective quantization and multimodal effective models for spherically layered systems

    Full text link
    We propose a geometry-specific, mode-selective quantization scheme in coupled field-emitter systems which makes it easy to include material and geometrical properties, intrinsic losses as well as the positions of an arbitrary number of quantum emitters. The method is presented through the example of a spherically symmetric, non-magnetic, arbitrarily layered system. We follow it up by a framework to project the system on simpler, effective cavity QED models. Maintaining a well-defined connection to the original quantization, we derive the emerging effective quantities from the full, mode-selective model in a mathematically consistent way. We discuss the uses and limitations of these effective models

    Quantum Plasmonics with multi-emitters: Application to adiabatic control

    Full text link
    We construct mode-selective effective models describing the interaction of N quantum emitters (QEs) with the localised surface plasmon polaritons (LSPs) supported by a spherical metal nanoparticle (MNP) in an arbitrary geometric arrangement of the QEs. We develop a general formulation in which the field response in the presence of the nanosystem can be decomposed into orthogonal modes with the spherical symmetry as an example. We apply the model in the context of quantum information, investigating on the possibility of using the LSPs as mediators of an efficient control of population transfer between two QEs. We show that a Stimulated Raman Adiabatic Passage configuration allows such a transfer via a decoherence-free dark state when the QEs are located on the same side of the MNP and very closed to it, whereas the transfer is blocked when the emitters are positioned at the opposite sides of the MNP. We explain this blockade by the destructive superposition of all the interacting plasmonic modes

    Plant response to solar ultraviolet-B radiation in a southern South American Sphagnum peatland

    Get PDF
    1. Plant growth and pigmentation of the moss Sphagnum magellanicum and the vascular plants Empetrum rubrum, Nothofagus antarctica and Tetroncium magellanicum were measured under near-ambient (90% of ambient) and reduced (20%) ultraviolet-B (UV-B) radiation for three growing seasons in a Sphagnum peatland in Tierra del Fuego, Argentina (55°S). 2. Reduction of solar UV-B increased height growth but decreased volumetric density in S. magellanicum so that biomass production was not influenced during the 3 years. The morphology of vascular plants tended not to respond to UV-B reduction. 3. A 10-20% decrease in UV-B-absorbing compounds occurred in T. magellanicum under solar UV-B reduction. No effects were seen on chlorophyll or carotenoids in S. magellanicum, although, for UV-B-absorbing compounds, a significant interaction between UV-B and year suggests some response to solar UV-B reduction. 4. The climate-related growth of the dwarf shrub E. rubrum was assessed retrospectively by correlating an 8-year record of annual stem elongation with macroclimatic factors including solar UV-B and visible radiation, precipitation and temperature. 5. No significant negative correlations were found between annual E. rubrum stem elongation and ambient solar UV-B, the ratio of UV-B: visible radiation, or the 305-nm: 340-nm irradiance ratio for an 8-year record (1990-91 to 1997-98), nor was stem elongation affected by solar UV-B reduction in our experimental field plots after 3 years. 6. The role of solar UV-B radiation on plant growth in Sphagnum peatlands in Tierra del Fuego, Argentina, is likely to depend on the severity of stratospheric ozone depletion over the next several decades. The increases in ambient solar UV-B associated with ozone depletion over the last 20 years are less than the difference between our radiation treatments. Therefore, providing that the ozone layer substantially recovers by the middle of this century, only modest effects of increased solar UV-B on plant growth may be expected.Fil: Searles, Peter Stoughton. State University of Utah; Estados UnidosFil: Flint, Stephan D.. State University of Utah; Estados UnidosFil: Diaz, Susana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Rousseaux, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Ballare, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Caldwell, Martyn M.. State University of Utah; Estados Unido

    Tapping wave energy through Longuet-Higgins microseism effect

    No full text
    International audienceIt is well-known, since the works of Miche (1944) and Longuet-Higgins (1950), that, under a standing wave system, second-order pressures at twice the wave frequency penetrate the water column down to the sea-°oor, whatever the waterdepth. Recently Gu¶evel proposed that energy could be extracted from the waves with a heaving horizontal plate at the sea bottom, located next to a re°ective cli® or sea-wall, and tuned to oscillate at twice the wave frequency. Encouraging preliminary experiments were conducted in ACRI's wavetank (Lajoie et al. 2007). In this paper we address the theoretical modeling of wave energy extraction with such a device, in the asymptotic case when the waterdepth is very large compared to the wavelength. In section I we assume that the ¯rst-order wave system is little modi¯ed, i.e. the power taken from the waves is a small portion of the power carried by the incoming wave. In section II we relieve this assumption and we show that one hundred percent of the wave power can be extracted, notwithstanding how large the waterdepth

    Experimental demonstration of the supersonic-subsonic bifurcation in the circular jump: A hydrodynamic white hole

    Full text link
    We provide an experimental demonstration that the circular hydraulic jump represents a hydrodynamic white hole or gravitational fountain (the time-reverse of a black hole) by measuring the angle of the Mach cone created by an object in the "supersonic" inner flow region. We emphasise the general character of this gravitational analogy by showing theoretically that the white hole horizon constitutes a stationary and spatial saddle-node bifurcation within dynamical-systems theory. We also demonstrate that the inner region has a "superluminal" dispersion relation, i.e., that the group velocity of the surface waves increases with frequency, and discuss some possible consequences with respect to the robustness of Hawking radiation. Finally, we point out that our experiment shows a concrete example of a possible "transplanckian distortion" of black/white holes.Comment: 5 pages, 5 figures. New "transplanckian effect" described. Several clarifications, additional figures and references. Published versio

    The Effects of Chlorophyll Assimilation on Carbon Fluxes in a Global Biogeochemical Model

    Get PDF
    In this paper, we investigated whether the assimilation of remotely-sensed chlorophyll data can improve the estimates of air-sea carbon dioxide fluxes (FCO2). Using a global, established biogeochemical model (NASA Ocean Biogeochemical Model, NOBM) for the period 2003-2010, we found that the global FCO2 values produced in the free-run and after assimilation were within -0.6 mol C m(sup -2) y(sup -1) of the observations. The effect of satellite chlorophyll assimilation was assessed in 12 major oceanographic regions. The region with the highest bias was the North Atlantic. Here the model underestimated the fluxes by 1.4 mol C m(sup -2) y(sup -1) whereas all the other regions were within 1 mol C m(sup -2) y(sup -1) of the data. The FCO2 values were not strongly impacted by the assimilation, and the uncertainty in FCO2 was not decreased, despite the decrease in the uncertainty in chlorophyll concentration. Chlorophyll concentrations were within approximately 25% of the database in 7 out of the 12 regions, and the assimilation improved the chlorophyll concentration in the regions with the highest bias by 10-20%. These results suggest that the assimilation of chlorophyll data does not considerably improve FCO2 estimates and that other components of the carbon cycle play a role that could further improve our FCO2 estimates

    Hawking Radiation on an Ion Ring in the Quantum Regime

    Full text link
    This paper discusses a recent proposal for the simulation of acoustic black holes with ions. The ions are rotating on a ring with an inhomogeneous, but stationary velocity profile. Phonons cannot leave a region, in which the ion velocity exceeds the group velocity of the phonons, as light cannot escape from a black hole. The system is described by a discrete field theory with a nonlinear dispersion relation. Hawking radiation is emitted by this acoustic black hole, generating entanglement between the inside and the outside of the black hole. We study schemes to detect the Hawking effect in this setup.Comment: 42 pages (one column), 17 figures, published revised versio

    Lorenz or Coulomb in Galilean Electromagnetism ?

    Get PDF
    Galilean Electromagnetism was discovered thirty years ago by Levy-Leblond & Le Bellac. However, these authors only explored the consequences for the fields and not for the potentials. Following De Montigny & al., we show that the Coulomb gauge condition is the magnetic limit of the Lorenz gauge condition whereas the Lorenz gauge condition applies in the electric limit of L\'{e}vy-Leblond & Le Bellac. Contrary to De Montigny & al. who used Galilean tensor calculus, we use orders of magnitude based on physical motivations in our derivation.Comment: PDF versio

    The Price of Virtue: The Socio-judicial Regulation of Juvenile Sexuality in France during the first half of the Twentieth Century

    Get PDF
    During the 20thcentury, child protection became an increasingly important part of judicial practice in most Western countries. In the process, children and youth were removed from the criminal courts to a separate juvenile justice system. For young people, this meant a much closer scrutiny of their intimate lives. The new system widened the range of reprehensible behaviour that could justify the state’s intervention, by emphasising the “interest of the child” within legal procedure. As scholars have observed, this new child welfare system, while advocating the preservation of the youth, increased the surveillance of popular-class families and opened the way to a more intrusive state regulation of private matters. Reinforced since the 18thcentury, sexual discipline had been applied first to the children of the bourgeoisie. But it now seemed to encompass the younger members of the popular classes. For their part, young people met these developments with a desire for emancipation, foreshadowing the loosening of emotional and sexual norms after World War II. In spite of this new child welfare judicial approach, the modes of conflict resolution were still linked to a “transactional” system of social conflict resolution, notably in the case of sexual violence committed by youth on children. In such cases, the justice system was more interested in balancing the interests of families and communities than in truly recognizing the victim’s rights. This study focuses on the judicial treatment of juvenile sexual activities, based on the archives of the Juvenile court of Angers.[5]The latter is a medium-sized city in the Loire valley whose working-class population was still relatively large during the first part of the 20thcentury. However, the jurisdiction of the Juvenile Court of Angers also included a rather large rural area.[6]It will be argued that the justice system was marked by its reserve in the face of juvenile mores. Two different ways in which sexuality can be understood will be explored. Suffered by its young victims, it was nevertheless practised by youth as a part of their social experience.Finally, considerable disparity in the treatment of juvenile sexual behaviour by the justice system can be observed when gender is taken into account: while boys were viewed as predators, girls were suspected of sexual corruption. These representations, which underlay normative practices, framed the social experience of sexuality for children and adolescents

    On the electrodynamics of moving bodies at low velocities

    Get PDF
    We discuss the seminal article in which Le Bellac and Levy-Leblond have identified two Galilean limits of electromagnetism, and its modern implications. We use their results to point out some confusion in the literature and in the teaching of special relativity and electromagnetism. For instance, it is not widely recognized that there exist two well defined non-relativistic limits, so that researchers and teachers are likely to utilize an incoherent mixture of both. Recent works have shed a new light on the choice of gauge conditions in classical electromagnetism. We retrieve Le Bellac-Levy-Leblond's results by examining orders of magnitudes, and then with a Lorentz-like manifestly covariant approach to Galilean covariance based on a 5-dimensional Minkowski manifold. We emphasize the Riemann-Lorenz approach based on the vector and scalar potentials as opposed to the Heaviside-Hertz formulation in terms of electromagnetic fields. We discuss various applications and experiments, such as in magnetohydrodynamics and electrohydrodynamics, quantum mechanics, superconductivity, continuous media, etc. Much of the current technology where waves are not taken into account, is actually based on Galilean electromagnetism
    corecore