667 research outputs found
Lifetime and polarization of the radiative decay of excitons, biexcitons and trions in CdSe nanocrystal quantum dots
Using the pseudopotential configuration-interaction method, we calculate the intrinsic lifetime and polarization of the radiative decay of single excitons (X), positive and negative trions (X+ and X−), and biexcitons (XX) in CdSe nanocrystal quantum dots. We investigate the effects of the inclusion of increasingly more complex many-body treatments, starting from the single-particle approach and culminating with the configuration-interaction scheme. Our configuration-interaction results for the size dependence of the single-exciton radiative lifetime at room temperature are in excellent agreement with recent experimental data. We also find the following. (i) Whereas the polarization of the bright exciton emission is always perpendicular to the hexagonal c axis, the polarization of the dark exciton switches from perpendicular to parallel to the hexagonal c axis in large dots, in agreement with experiment. (ii) The ratio of the radiative lifetimes of mono- and biexcitons (X):(XX) is ~1:1 in large dots (R=19.2 Å). This ratio increases with decreasing nanocrystal size, approaching 2 in small dots (R=10.3 Å). (iii) The calculated ratio (X+):(X−) between positive and negative trion lifetimes is close to 2 for all dot sizes considered
Strict inequalities of critical values in continuum percolation
We consider the supercritical finite-range random connection model where the
points of a homogeneous planar Poisson process are connected with
probability for a given . Performing percolation on the resulting
graph, we show that the critical probabilities for site and bond percolation
satisfy the strict inequality . We also show
that reducing the connection function strictly increases the critical
Poisson intensity. Finally, we deduce that performing a spreading
transformation on (thereby allowing connections over greater distances but
with lower probabilities, leaving average degrees unchanged) {\em strictly}
reduces the critical Poisson intensity. This is of practical relevance,
indicating that in many real networks it is in principle possible to exploit
the presence of spread-out, long range connections, to achieve connectivity at
a strictly lower density value.Comment: 38 pages, 8 figure
Electromagnetic Modelling for Information Extraction from High Resolution SAR Images of Urban Areas
Analysis, interpretation and feature extraction concerning High Resolution (HR) Synthetic Aperture Radar (SAR) images of urban areas urgently require support of sound and appropriate electromagnetic modelling. The modelling takes into consideration the radar geometry and the (geometric and electromagnetic) scene parameters but also the novelty brought by high resolution. In this paper, this way of developing suitable electromagnetic modelling for HR SAR images of urban areas is shown to be successful as able to interpret and retrieve, from these scenarios, new and interesting details that will certainly represent the main actor of next generation of applications for urban areas with SAR sensors
A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots
Excitonic spectra are calculated for free-standing, surface passivated InAs
quantum dots using atomic pseudopotentials for the single-particle states and
screened Coulomb interactions for the two-body terms. We present an analysis of
the single particle states involved in each excitation in terms of their
angular momenta and Bloch-wave parentage. We find that (i) in agreement with
other pseudopotential studies of CdSe and InP quantum dots, but in contrast to
k.p calculations, dot states wavefunction exhibit strong odd-even angular
momentum envelope function mixing (e.g. with ) and large
valence-conduction coupling. (ii) While the pseudopotential approach produced
very good agreement with experiment for free-standing, colloidal CdSe and InP
dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted
spectrum does {\em not} agree well with the measured (ensemble average over dot
sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure
one, and (2) while the spacing between the lowest excitons is reproduced, the
spacings between higher excitons is not fit well. Discrepancy (1) could result
from surface states emission. As for (2), agreement is improved when account is
taken of the finite size distribution in the experimental data. (iii) We find
that the single particle gap scales as (not ), that the
screened (unscreened) electron-hole Coulomb interaction scales as
(), and that the eccitonic gap sclaes as . These scaling
laws are different from those expected from simple models.Comment: 12 postscript figure
Accuracy of Building Height Estimation from SAR Images
Abstract—Applicability and efficiency of building height retrieval from radiometric parameters on SAR images is here investigated. The influence of an imperfect knowledge of ground truth is studied by means of a theoretical analysis compared with results deriving from simulation examples. For some cases, propagated errors are quantitatively evaluated and discussed
DNA damage and transcriptional regulation in iPSC-derived neurons from Ataxia Telangiectasia patients
Abstract Ataxia Telangiectasia (A-T) is neurodegenerative syndrome caused by inherited mutations inactivating the ATM kinase, a master regulator of the DNA damage response (DDR). What makes neurons vulnerable to ATM loss remains unclear. In this study we assessed on human iPSC-derived neurons whether the abnormal accumulation of DNA-Topoisomerase 1 adducts (Top1ccs) found in A-T impairs transcription elongation, thus favoring neurodegeneration. Furthermore, whether neuronal activity-induced immediate early genes (IEGs), a process involving the formation of DNA breaks, is affected by ATM deficiency. We found that Top1cc trapping by CPT induces an ATM-dependent DDR as well as an ATM-independent induction of IEGs and repression especially of long genes. As revealed by nascent RNA sequencing, transcriptional elongation and recovery were found to proceed with the same rate, irrespective of gene length and ATM status. Neuronal activity induced by glutamate receptors stimulation, or membrane depolarization with KCl, triggered a DDR and expression of IEGs, the latter independent of ATM. In unperturbed A-T neurons a set of genes (FN1, DCN, RASGRF1, FZD1, EOMES, SHH, NR2E1) implicated in the development, maintenance and physiology of central nervous system was specifically downregulated, underscoring their potential involvement in the neurodegenerative process in A-T patients
Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots
We adopt an atomistic pseudopotential description of the electronic structure
of self-assembled, lens shaped InAs quantum dots within the ``linear
combination of bulk bands'' method. We present a detailed comparison with
experiment, including quantites such as the single particle electron and hole
energy level spacings, the excitonic band gap, the electron-electron, hole-hole
and electron hole Coulomb energies and the optical polarization anisotropy. We
find a generally good agreement, which is improved even further for a dot
composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review
Simulation Tools for Interpretation of High Resolution SAR Images of Urban Areas
New powerful spaceborne sensors for monitoring urban areas have been designed and are ready for launch. More detailed SAR images will be soon available and, consequently, new tools for their interpretation are needed, above all when urban scenes are illuminated. In this paper, the authors propose some tools for the study and the analysis of high resolution SAR images based on a SAR raw signal simulator for urban areas. Comparing simulated SAR images with the real one, interpretation of SAR data is improved and fundamental support of the employed tools is further assessed
- …