308 research outputs found

    Theoretical Predictions of Superconductivity in Alkali Metals under High Pressure

    Full text link
    We calculated the superconductivity properties of alkali metals under high pressure using the results of band theory and the rigid-muffin-tin theory of Gaspari and Gyorffy. Our results suggest that at high pressures Lithium, Potassium, Rubidium and Cesium would be superconductors with transition temperatures approaching 5−20K5-20 K. Our calculations also suggest that Sodium would not be a superconductor under high pressure even if compressed to less than half of its equilibrium volume. We found that the compression of the lattice strengthens the electron-phonon coupling through a delicately balanced increase of both the electronic and phononic components of this coupling. This increase of the electron-phonon coupling in Li is due to an enhancement of the ss-pp channel of the interaction, while in the heavier elements the pp-dd channel is the dominant component.Comment: 6 pages, 8 figure

    Insights into the fracture mechanisms and strength of amorphous and nanocomposite carbon

    Full text link
    Tight-binding molecular dynamics simulations shed light into the fracture mechanisms and the ideal strength of tetrahedral amorphous carbon and of nanocomposite carbon containing diamond crystallites, two of the hardest materials. It is found that fracture in the nanocomposites, under tensile or shear load, occurs inter-grain and so their ideal strength is similar to the pure amorphous phase. The onset of fracture takes place at weakly bonded sp^3 sites in the amorphous matrix. On the other hand, the nanodiamond inclusions significantly enhance the elastic moduli, which approach those of diamond.Comment: 6 pages, 4 figure

    A Tight-Binding Investigation of the NaxCoO2 Fermi Surface

    Full text link
    We perform an orthogonal basis tight binding fit to an LAPW calculation of paramagnetic Nax_xCoO2_2 for several dopings. The optimal position of the apical oxygen at each doping is resolved, revealing a non-trivial dependence of the band structure and Fermi surface on oxygen height. We find that the small eg′_{g'} hole pockets are preserved throughout all investigated dopings and discuss some possible reasons for the lack of experimental evidence for these Fermi sheets

    Kondo effect of an adsorbed cobalt phthalocyanine (CoPc) molecule: the role of quantum interference

    Full text link
    A recent experimental study showed that, distorting a CoPc molecule adsorbed on a Au(111) surface, a Kondo effect is induced with a temperature higher than 200 K. We examine a model in which an atom with strong Coulomb repulsion (Co) is surrounded by four atoms on a square (molecule lobes), and two atoms above and below it representing the apex of the STM tip and an atom on the gold surface (all with a single, half-filled, atomic orbital). The Hamiltonian is solved exactly for the isolated cluster, and, after connecting the leads (STM tip and gold), the conductance is calculated by standard techniques. Quantum interference prevents the existence of the Kondo effect when the orbitals on the square do not interact (undistorted molecule); the Kondo resonance shows up after switching on that interaction. The weight of the Kondo resonance is controlled by the interplay of couplings to the STM tip and the gold surface, and between the molecule lobes.Comment: 5 pages, 3 figura

    Voltage-Controlled Surface Magnetization of Itinerant Ferromagnet Ni_(1-x)Cu_x

    Full text link
    We argue that surface magnetization of a metallic ferromagnet can be turned on and off isothermally by an applied voltage. For this, the material's electron subsystem must be close enough to the boundary between para- and ferromagnetic regions on the electron density scale. For the 3d series, the boundary is between Ni and Cu, which makes their alloy a primary candidate. Using Ginzburg-Landau functional, which we build from Ni_(1-x)Cu_x empirical properties, ab-initio parameters of Ni and Cu, and orbital-free LSDA, we show that the proposed effect is experimentally observable.Comment: 4 pages; 2 figures; submitted to PRL February 16th 2008; transferred to PRB June 21st 2008; published July 15th 200

    Conduction Channels of One-Atom Zinc Contacts

    Get PDF
    We have determined the transmission coefficients of atomic-sized Zn contacts using a new type of breakjunction which contains a whisker as a central bridge. We find that in the last conductance plateau the transport is unexpectedly dominated by a well-transmitting single conduction channel. We explain the experimental findings with the help of a tight-binding model which shows that in an one-atom Zn contact the current proceeds through the 4s and 4p orbitals of the central atom.Comment: revtex4, 5 pages, 5 figure
    • …
    corecore