6,029 research outputs found
Emergence of atom-light-mirror entanglement inside an optical cavity
We propose a scheme for the realization of a hybrid, strongly
quantum-correlated system formed of an atomic ensemble surrounded by a
high-finesse optical cavity with a vibrating mirror. We show that the steady
state of the system shows tripartite and bipartite continuous variable
entanglement in experimentally accessible parameter regimes, which is robust
against temperature
Urban wind power and the private sector : community benefits, social acceptance and public engagement
Given the ambitious government targets for renewable energy generation in the UK, there has been a push by government and industry towards various types and scales of Renewable Energy Technologies (RETs). This paper explores the implications of commercial urban wind projects for local communities, drawing on a case study of proposals by ASDA to construct wind turbines in two semi-urban locations in the UK. The paper argues that community responses to the proposals were complex and varied and could not adequately be encapsulated by 'nimby' (not in my back yard) assignations. It concludes that while ASDA followed a process of consulting local people, this process highlighted the problems of the 'business as usual' approach to public engagement employed by ASDA, and assumptions made about public acceptance of RETs
Transport phenomenology for a holon-spinon fluid
We propose that the normal-state transport in the cuprate superconductors can
be understood in terms of a two-fluid model of spinons and holons. In our
scenario, the resistivity is determined by the properties of the holons while
magnetotransport involves the recombination of holons and spinons to form
physical electrons. Our model implies that the Hall transport time is a measure
of the electron lifetime, which is shorter than the longitudinal transport
time. This agrees with our analysis of the normal-state data. We predict a
strong increase in linewidth with increasing temperature in photoemission. Our
model also suggests that the AC Hall effect is controlled by the transport
time.Comment: 4 pages, 1 postscript figure. Uses RevTeX, epsf, multico
Validity of the Gor'kov expansion near the upper critical field in type II superconductors
We have examined the validity of the Gor'kov expansion in the strength of the
order parameter of type II superconductors near the upper critical field.
Although the degeneracy of the electron levels in a magnetic field gives non-
perturbative terms in the solution to the Bogoliubov-de Gennes equations we
find, contrary to recent claims, that these non-perturbative terms cancel in
the expression for the thermodynamic potential, and that the traditional
Gor'kov theory is correct sufficiently close to Hc2 at finite temperature. We
have derived conditions for the validity of the Gor'kov theory which
essentially state, that the change in the quasiparticle energies as compared to
the normal state energies cannot be too large compared to the temperature.Comment: 5 pages, 3 figures. One reference adde
Electric field effect on superconductivity at complex oxide interfaces
We examine the enhancement of the interfacial superconductivity between
LaAlO and SrTiO by an effective electric field. Through the
breaking of inversion symmetry at the interface, we show that a term coupling
the superfluid density and an electric field can augment the superconductivity
transition temperature. Microscopically, we show that an electric field can
also produce changes in the carrier density by relating the measured
capacitance to the density of states. Through the electron-phonon induced
interaction in bulk SrTiO, we estimate the transition temperature.Comment: 7 Pages, Submitted to Physical Revie
Additional application of the NASCAP code. Volume 1: NASCAP extension
The NASCAP computer program comprehensively analyzes problems of spacecraft charging. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Several changes were made to NASCAP, and a new code, NASCAP/LEO, was developed. In addition, detailed studies of several spacecraft-environmental interactions and of the SCATHA spacecraft were performed. The NASCAP/LEO program handles situations of relatively short Debye length encountered by large space structures or by any satellite in low earth orbit (LEO)
Analysis of the charging of the SCATHA (P78-2) satellite
The charging of a large object in polar Earth orbit was investigated in order to obtain a preliminary indication of the response of the shuttle orbiter to such an environment. Two NASCAP (NASA Charging Analyzer Program) models of SCATHA (Satellite Charging at High Altitudes) were used in simulations of charging events. The properties of the satellite's constituent materials were compiled and representations of the experimentally observed plasma spectra were constructed. Actual charging events, as well as those using test environments, were simulated. Numerical models for the simulation of particle emitters and detectors were used to analyze the operation of these devices onboard SCATHA. The effect of highly charged surface regions on the charging conductivity within a photosheath was used to interpret results from the onboard electric field experiment. Shadowing calculations were carried out for the satellite and a table of effective illuminated areas was compiled
Induced polarization at a paraelectric/superconducting interface
We examine the modified electronic states at the interface between
superconducting and ferro(para)-electric heterostructures. We find that
electric polarization and superconducting order parameters can be
significantly modified due to coupling through linear terms brought about by
explicit symmetry breaking at the interface. Using an effective action and a
Ginzburg-Landau formalism, we show that an interaction term linear in the
electric polarization will modify the superconducting order parameter at
the interface. This also produces modulation of a ferroelectric polarization.
It is shown that a paraelectric-superconductor interaction will produce an
interface-induced ferroelectric polarization.Comment: 4 pages, 3 figures, Submitted to Phys. Rev.
Additional application of the NASCAP code. Volume 2: SEPS, ion thruster neutralization and electrostatic antenna model
The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs
Weak Measurements with Arbitrary Pointer States
The exact conditions on valid pointer states for weak measurements are
derived. It is demonstrated that weak measurements can be performed with any
pointer state with vanishing probability current density. This condition is
found both for weak measurements of noncommuting observables and for -number
observables. In addition, the interaction between pointer and object must be
sufficiently weak. There is no restriction on the purity of the pointer state.
For example, a thermal pointer state is fully valid.Comment: 4 page
- …