56 research outputs found

    Genome Sequencing of a Marine Spirillum, Oceanospirillum multiglobuliferum ATCC 33336T, from Japan

    Get PDF
    Oceanospirillum multiglobuliferum ATCC 33336T is a motile gammaproteobacterium with bipolar tufted flagella, noted for its low salt tolerance compared to other marine spirilla. This strain was originally isolated from the putrid infusions of Crassostrea gigas near Hiroshima, Japan. This paper presents a draft genome sequence for O. multiglobuliferum ATCC 33336T

    Draft Genome Sequence of the Salt Water Bacterium Oceanospirillum linum ATCC 11336T

    Get PDF
    Oceanospirillum linum ATCC 11336T is an aerobic, bipolar-tufted gammaproteobacterium first isolated in the Long Island Sound in the 1950s. This announcement offers a genome sequence for O. linum ATCC 11336T, which has a predicted genome size of 3,782,189 bp (49.13% G+C content) containing 3,540 genes and 3,361 coding sequences

    Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain

    Get PDF
    In the hot debate on arthropod relationships, Crustaceans and the morphology of their appendages play a pivotal role. To gain new insights into how arthropod appendages evolved, developmental biologists recently have begun to examine the expression and function of Drosophila appendage genes in Crustaceans. However, cellular aspects of Crustacean limb development such as myogenesis are poorly understood in Crustaceans so that the interpretative context in which to analyse gene functions is still fragmentary. The goal of the present project was to analyse muscle development in Crustacean appendages, and to that end, monoclonal antibodies against arthropod muscle proteins were generated. One of these antibodies recognises certain isoforms of myosin heavy chain and strongly binds to muscle precursor cells in malacostracan Crustacea. We used this antibody to study myogenesis in two isopods, Porcellio scaber and Idotea balthica (Crustacea, Malacostraca, Peracarida), by immunohistochemistry. In these animals, muscles in the limbs originate from single muscle precursor cells, which subsequently grow to form multinucleated muscle precursors. The pattern of primordial muscles in the thoracic limbs was mapped, and results compared to muscle development in other Crustaceans and in insects

    Molecular cloning and localization of a calpain-like protease from the abdominal muscle of Norway lobster Nephrops norvegicus

    No full text
    Calpains are ubiquitous cysteine-proteases found in many, if not all, living organisms and their roles within these organisms are diverse, ranging from the mediation of cytoskeletal remodeling to the regulation of gene expression. In crustaceans calpains have so far been shown to be important mainly during moulting and growth. In the present study we report the expression of a calpain in the abdominal muscle of Norway lobster (Nephrops norvegicus) using degenerate primer, rapid amplification of cDNA ends (5'-3'-RACE), reverse transcriptase-PCR and RNA in situ hybridization approaches. The full-length mRNA sequence (2,774bp) was found to include an open reading frame (bp 225-1,940) encoding a 572 amino acid polypeptide with a predicted mass of 65.9kDa and a predicted pI of 5.17. The calpain was found to be an arthropod M-class calpain homologue to Homarus americanus Calpain M (Ha-CalpM) and has thus been termed Nephrops norvegicus calpain M (Nn-CalpM). When its expression pattern in abdominal muscle of adult intermoult Nephrops norvegicus was investigated an exclusive expression in a thin layer of connective tissue cells surrounding muscle fibres was found. This localization suggests a role in tenderizing connective tissue networks during growth and moulting
    corecore