8 research outputs found

    From dynamical scaling to local scale-invariance: a tutorial

    Full text link
    Dynamical scaling arises naturally in various many-body systems far from equilibrium. After a short historical overview, the elements of possible extensions of dynamical scaling to a local scale-invariance will be introduced. Schr\"odinger-invariance, the most simple example of local scale-invariance, will be introduced as a dynamical symmetry in the Edwards-Wilkinson universality class of interface growth. The Lie algebra construction, its representations and the Bargman superselection rules will be combined with non-equilibrium Janssen-de Dominicis field-theory to produce explicit predictions for responses and correlators, which can be compared to the results of explicit model studies. At the next level, the study of non-stationary states requires to go over, from Schr\"odinger-invariance, to ageing-invariance. The ageing algebra admits new representations, which acts as dynamical symmetries on more general equations, and imply that each non-equilibrium scaling operator is characterised by two distinct, independent scaling dimensions. Tests of ageing-invariance are described, in the Glauber-Ising and spherical models of a phase-ordering ferromagnet and the Arcetri model of interface growth.Comment: 1+ 23 pages, 2 figures, final for

    Positions of the magnetoroton minima in the fractional quantum Hall effect

    No full text
    The multitude of excitations of the fractional quantum Hall state are very accurately understood, microscopically, as excitations of composite fermions across their Landau-like Λ\Lambda levels. In particular, the dispersion of the composite fermion exciton, which is the lowest energy spin conserving neutral excitation, displays filling-factor-specific minima called "magnetoroton" minima. Simon and Halperin employed the Chern-Simons field theory of composite fermions [Phys. Rev. B {\bf 48}, 17368 (1993)] to predict the magnetoroton minima positions. Recently, Golkar \emph{et al.} [Phys. Rev. Lett. {\bf 117}, 216403 (2016)] have modeled the neutral excitations as deformations of the composite fermion Fermi sea, which results in a prediction for the positions of the magnetoroton minima. Using methods of the microscopic composite fermion theory we calculate the positions of the roton minima for filling factors up to 5/11 along the sequence s/(2s+1)s/(2s+1) and find them to be in reasonably good agreement with both the Chern-Simons field theory of composite fermions and Golkar \emph{et al.}'s theory. We also find that the positions of the roton minima are insensitive to the microscopic interaction in agreement with Golkar \emph{et al.}'s theory. As a byproduct of our calculations, we obtain the charge and neutral gaps for the fully spin polarized states along the sequence s/(2s±1)s/(2s\pm 1) in the lowest Landau level and the n=1n=1 Landau level of graphene.Comment: 9 pages, 5 figures, published versio

    Arsenic pollution sources

    No full text

    Indigenous Milk Enzymes

    No full text
    corecore