2,718 research outputs found

    Nonlinear metrology with a quantum interface

    Full text link
    We describe nonlinear quantum atom-light interfaces and nonlinear quantum metrology in the collective continuous variable formalism. We develop a nonlinear effective Hamiltonian in terms of spin and polarization collective variables and show that model Hamiltonians of interest for nonlinear quantum metrology can be produced in 87^{87}Rb ensembles. With these Hamiltonians, metrologically relevant atomic properties, e.g. the collective spin, can be measured better than the "Heisenberg limit" 1/N\propto 1/N. In contrast to other proposed nonlinear metrology systems, the atom-light interface allows both linear and non-linear estimation of the same atomic quantities.Comment: 8 pages, 1 figure

    Quantum interface between an electrical circuit and a single atom

    Get PDF
    We show how to bridge the divide between atomic systems and electronic devices by engineering a coupling between the motion of a single ion and the quantized electric field of a resonant circuit. Our method can be used to couple the internal state of an ion to the quantized circuit with the same speed as the internal-state coupling between two ions. All the well-known quantum information protocols linking ion internal and motional states can be converted to protocols between circuit photons and ion internal states. Our results enable quantum interfaces between solid state qubits, atomic qubits, and light, and lay the groundwork for a direct quantum connection between electrical and atomic metrology standards.Comment: Supplemental material available on reques

    Cooperation of Sperm in Two Dimensions: Synchronization, Attraction and Aggregation through Hydrodynamic Interactions

    Get PDF
    Sperm swimming at low Reynolds number have strong hydrodynamic interactions when their concentration is high in vivo or near substrates in vitro. The beating tails not only propel the sperm through a fluid, but also create flow fields through which sperm interact with each other. We study the hydrodynamic interaction and cooperation of sperm embedded in a two-dimensional fluid by using a particle-based mesoscopic simulation method, multi-particle collision dynamics (MPC). We analyze the sperm behavior by investigating the relationship between the beating-phase difference and the relative sperm position, as well as the energy consumption. Two effects of hydrodynamic interaction are found, synchronization and attraction. With these hydrodynamic effects, a multi-sperm system shows swarm behavior with a power-law dependence of the average cluster size on the width of the distribution of beating frequencies

    A Decade On, How Has the Visibility of Energy Changed? Energy Feedback Perceptions from UK Focus Groups

    Get PDF
    The Smart Meter Rollout Programme in the UK has required energy suppliers to offer new smart meters to customers to provide near real-time energy use information and enable two-way communication between the meter and the central system. The provision was expected to result in meaningful energy reductions, but recent estimates suggest that these reductions may be as low as 2%. This paper contributes to the ongoing debate about the effectiveness of smart meters and in-home energy displays by providing insights on energy feedback perceptions from a series of focus groups with postgraduate consumers. In addition to domestic energy use, the study investigated how participants perceived their energy use at work and how they perceived the energy reduction efforts of their institutions and employers. A laddered and projective methodology was used to more deeply question participant perceptions and reveal their attitudes. The analysis of responses revealed a limited awareness around energy efficiency strategies and opportunities for more visual, mobile, engaging and target-driven interfaces for energy data. The findings also agree with previous observations that environmental concerns are not a key driver of energy reduction behaviours. This was shown by laddered questioning, not to be due to a lack of environmental concern, but rather the perception that reducing energy consumption would have negligible impact. A decade after in-home energy displays enabled a means of providing ‘visibility’ to ‘invisible’ energy consumption, little appears to have changed in the perception and experience of energy feedback

    Comparison of Separation Shock for Explosive and Nonexplosive Release Actuators on a Small Spacecraft Panel

    Get PDF
    Functional shock, safety, overall system costs, and emergence of new technologies, have raised concerns regarding continued use of pyrotechnics on spacecraft. NASA Headquarters-Office of Chief Engineer requested Langley Research Center (LaRC) study pyrotechnic alternatives using non-explosive actuators (NEA's), and LARC participated with Lockheed Martin Missile and Space Co. (LMMSC)-Sunnyvale, CA in objectively evaluating applicability of some NEA mechanisms to reduce small spacecraft and booster separation event shock. Comparative tests were conducted on a structural simulator using five different separation nut mechanisms, consisting of three pyrotechnics from OEA-Aerospace and Hi-Shear Technology and two NEA's from G&H Technology and Lockheed Martin Astronautics (LMA)-Denver, CO. Multiple actuations were performed with preloads up to 7000 pounds, 7000 being the comparison standard. All devices except LMA's NEA rotary flywheel-nut concept were available units with no added provisions to attenuate shock. Accelerometer measurements were recorded, reviewed, processed into Shock Response Spectra (SRS), and comparisons performed. For the standard preload, pyrotechnics produced the most severe and the G&H NEA the least severe functional shock levels. Comparing all results, the LMA concept produced the lowest levels, with preload limited to approximately 4200 pounds. Testing this concept over a range of 3000 to 4200 pounds indicated no effect of preload on shock response levels. This report presents data from these tests and the comparative results

    Dynamics of a Brownian circle swimmer

    Full text link
    Self-propelled particles move along circles rather than along a straight line when their driving force does not coincide with their propagation direction. Examples include confined bacteria and spermatozoa, catalytically driven nanorods, active, anisotropic colloidal particles and vibrated granulates. Using a non-Hamiltonian rate theory and computer simulations, we study the motion of a Brownian "circle swimmer" in a confining channel. A sliding mode close to the wall leads to a huge acceleration as compared to the bulk motion, which can further be enhanced by an optimal effective torque-to-force ratio.Comment: v2: changed title from "The fate of a Brownian circle swimmer"; mainly changes of introduction and conclusion
    corecore