408 research outputs found

    First optical images of circumstellar dust surrounding the debris disk candidate HD 32297

    Full text link
    Near-infrared imaging with the Hubble Space Telescope recently revealed a circumstellar dust disk around the A star HD 32297. Dust scattered light is detected as far as 400 AU radius and the linear morphology is consistent with a disk ~10 degrees away from an edge-on orientation. Here we present the first optical images that show the dust scattered light morphology from 560 to 1680 AU radius. The position angle of the putative disk midplane diverges by 31 degrees and the color of dust scattering is most likely blue. We associate HD 32297 with a wall of interstellar gas and the enigmatic region south of the Taurus molecular cloud. We propose that the extreme asymmetries and blue disk color originate from a collision with a clump of interstellar material as HD 32297 moves southward, and discuss evidence consistent with an age of 30 Myr or younger.Comment: 5 pages; Accepted for publication in ApJ Letter

    FUSE Detection of Galactic OVI Emission in the Halo above the Perseus Arm

    Full text link
    Background observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) toward l=95.4, b=36.1 show OVI 1032,1038 in emission. This sight line probes a region of stronger-than-average soft X-ray emission in the direction of high-velocity cloud Complex C above a part of the disk where Halpha filaments rise into the halo. The OVI intensities, 1600+/-300 ph/s/cm^2/sr (1032A) and 800+/-300 ph/s/cm^2/sr (1038A), are the lowest detected in emission in the Milky Way to date. A second sight line nearby (l=99.3, b=43.3) also shows OVI 1032 emission, but with too low a signal-to-noise ratio to obtain reliable measurements. The measured intensities, velocities, and FWHMs of the OVI doublet and the CII* line at 1037A are consistent with a model in which the observed emission is produced in the Galactic halo by hot gas ejected by supernovae in the Perseus arm. An association of the observed gas with Complex C appears unlikely.Comment: accepted for publication in ApJL, 11 pages including 3 figure

    Surprisingly Little O VI Emission Arises in the Local Bubble

    Get PDF
    This paper reports the first study of the O VI resonance line emission (1032, 1038 Angstroms) originating in the Local Bubble (or Local Hot Bubble) surrounding the solar neighborhood. In spite of the fact that O VI absorption within the Local Bubble has been observed, no resonance line emission was detected during our 230 ksec Far Ultraviolet Spectroscopic Explorer observation toward a ``shadowing'' filament in the southern Galactic hemisphere. As a result, tight 2 sigma upper limits are set on the intensities in the 1032 and 1038 Angstrom emission lines: 500 and 530 photons cm^{-2} s^{-1} sr^{-1}, respectively. These values place strict constraints on models and simulations. They suggest that the O VI-bearing plasma and the X-ray emissive plasma reside in distinct regions of the Local Bubble and are not mixed in a single plasma, whether in equilibrium with T ~ 10^6 K or highly overionized with T ~ 4 to 6 x 10^4 K. If the line of sight intersects multiple cool clouds within the Local Bubble, then the results also suggest that hot/cool transition zones differ from those in current simulations. With these intensity upper limits, we establish limits on the electron density, thermal pressure, pathlength, and cooling timescale of the O VI-bearing plasma in the Local Bubble. Furthermore, the intensity of O VI resonance line doublet photons originating in the Galactic thick disk and halo is determined (3500 to 4300 photons cm^{-2} s^{-1} sr^{-1}), and the electron density, thermal pressure, pathlength, and cooling timescale of its O VI-bearing plasma are calculated. The pressure in the Galactic halo's O VI-bearing plasma (3100 to 3800 K cm^{-3}) agrees with model predictions for the total pressure in the thick disk/lower halo. We also report the results of searches for other emission lines.Comment: accepted by ApJ, scheduled for May 2003, replacement astro-ph submission corrects typos and grammatical errors in original versio

    Evidence for deuterium astration in the planetary nebula Sh2-216?

    Get PDF
    We present FUSE observations of the line of sight to WD0439+466 (LS V +46 21), the central star of the old planetary nebula Sh2-216. The FUSE data shows absorption by many interstellar and stellar lines, in particular D I, H2 (J = 0 - 9), HD (J = 0 - 1), and CO. Many other stellar and ISM lines are detected in the STIS E140M HST spectra of this sightline, which we use to determine N(HI). We derive, for the neutral gas, D/H=(0.76 +0.12 -0.11)E-5, O/H = (0.89 +0.15 -0.11)E-4 and N/H = (3.24 +0.61-0.55)E-5. We argue that most of the gas along this sightline is associated with the planetary nebula. The low D/H ratio is likely the result of this gas being processed through the star (astrated) but not mixed with the ISM. This would be the first time that the D/H ratio has been measured in predominantly astrated gas. The O/H and N/H ratios derived here are lower than typical values measured in other planetary nebulae likely due to unaccounted for ionization corrections.Comment: Accepted for publication is ApJ

    An XMM-Newton Observation of the Local Bubble Using a Shadowing Filament in the Southern Galactic Hemisphere

    Get PDF
    We present an analysis of the X-ray spectrum of the Local Bubble, obtained by simultaneously analyzing spectra from two XMM-Newton pointings on and off an absorbing filament in the Southern galactic hemisphere (b ~ -45 deg). We use the difference in the Galactic column density in these two directions to deduce the contributions of the unabsorbed foreground emission due to the Local Bubble, and the absorbed emission from the Galactic halo and the extragalactic background. We find the Local Bubble emission is consistent with emission from a plasma in collisional ionization equilibrium with a temperature logTLB=6.060.04+0.02\log T_{LB} = 6.06^{+0.02}_{-0.04} and an emission measure of 0.018 cm^{-6} pc. Our measured temperature is in good agreement with values obtained from ROSAT All-Sky Survey data, but is lower than that measured by other recent XMM-Newton observations of the Local Bubble, which find logTLB6.2\log T_{LB} \approx 6.2 (although for some of these observations it is possible that the foreground emission is contaminated by non-Local Bubble emission from Loop I). The higher temperature observed towards other directions is inconsistent with our data, when combined with a FUSE measurement of the Galactic halo O VI intensity. This therefore suggests that the Local Bubble is thermally anisotropic. Our data are unable to rule out a non-equilibrium model in which the plasma is underionized. However, an overionized recombining plasma model, while observationally acceptable for certain densities and temperatures, generally gives an implausibly young age for the Local Bubble (\la 6 \times 10^5 yr).Comment: Accepted for publication in the Astrophysical Journal. 16 pages, 9 figure

    The Millennium Arecibo 21-CM Absorption Line Survey. II. Properties of the Warm and Cold Neutral Media

    Get PDF
    We use the Gaussian-fit results of Paper I to investigate the properties of interstellar HI in the Solar neighborhood. The Warm and Cold Neutral Media (WNM and CNM) are physically distinct components. The CNM spin temperature histogram peaks at about 40 K. About 60% of all HI is WNM. At z=0, we derive a volume filling fraction of about 0.50 for the WNM; this value is very rough. The upper-limit WNM temperatures determined from line width range upward from about 500 K; a minimum of about 48% of the WNM lies in the thermally unstable region 500 to 5000 K. The WNM is a prominent constituent of the interstellar medium and its properties depend on many factors, requiring global models that include all relevant energy sources, of which there are many. We use Principal Components Analysis, together with a form of least squares fitting that accounts for errors in both the independent and dependent parameters, to discuss the relationships among the four CNM Gaussian parameters. The spin temperature T_s and column density N(HI) are, approximately, the two most important eigenvectors; as such, they are sufficient, convenient, and physically meaningful primary parameters for describing CNM clouds. The Mach number of internal macroscopic motions for CNM clouds is typically 2.5, but there are wide variations. We discuss the historical tau-T_s relationship in some detail and show that it has little physical meaning. We discuss CNM morphology using the CNM pressure known from UV stellar absorption lines. Knowing the pressure allows us to show that CNM structures cannot be isotropic but instead are sheetlike, with length-to-thickness aspect ratios ranging up to about 280. We present large-scale maps of two regions where CNM lies in very large ``blobby sheets''.Comment: Revised submission to Ap.J. Changes include: (1) correction of turbulent Mach number in equation 16 and figure 12; the new typical value is 1.3 versus the old, incorrect value 2.5. (2) smaller typeface for the astro-ph version to conserve paper. 60 pages, 16 figure

    The Deuterium, Oxygen, and Nitrogen Abundance Toward LSE 44

    Full text link
    We present measurements of the column densities of interstellar DI, OI, NI, and H2 made with FUSE, and of HI made with IUE toward the sdO star LSE 44, at a distance of 554+/-66 pc. This target is among the seven most distant Galactic sight lines for which these abundance ratios have been measured. The column densities were estimated by profile fitting and curve of growth analyses. We find D/H = (2.24 +1.39 -1.32)E-5, D/O = (1.99 +1.30 -0.67)E-2, D/N = (2.75 +1.19 -0.89)E-1, and O/H = (1.13 +0.96 -0.71)E-3 (2 sigma). Of the most distant Galactic sight lines for which the deuterium abundance has been measured LSE 44 is one of the few with D/H higher than the Local Bubble value, but D/O toward all these targets is below the Local Bubble value and more uniform than the D/H distribution. (Abstract abridged.)Comment: 20 pages, including 9 figures. Accepted for publication in Ap

    Variations in the D/H ratio of extended sightlines from FUSE observations

    Get PDF
    We use new FUSE data to determine the column densities of interstellar DI, NI, OI, FeII, and H2 along the HD41161 and HD53975 sightlines. Together with N(HI) from the literature (derived from Copernicus and IUE data) we derive D/H, N/H, and O/H ratios. These high column density sightlines have both log H(HI)>21.00 and allow us to probe gas up to 1300 pc. In particular these sightlines allow us to determine the gas phase D/H ratio in a hydrogen column density range, log N(H)>20.70, where the only five measurements available in the literature yield a weighted average of D/H = (0.86 +/- 0.08)E-5. We find D/H=(2.14+ 0.51 - 0.43)E-5 along the HD41161 sightline. This ratio is 3sigma higher than the weighted mean D/H ratio quoted above, for sightlines with log N(H)>20.70, while the D/H ratio for the HD53975 line of sight, D/H = (1.02 +0.23 -0.20)E-5, agrees within the 1sigma uncertainties. Our D/H measurement along the HD 41161 sightline presents the first evidence of variations of D/H at high N(H). Our result seems to indicate that either the long sightlines that according to the deuterium depletion model are dominated by cold undisturbed gas where deuterium would be depleted onto carbonaceous grains occur at higher N(H) than previously thought or that the clumping of low D/H values in the literature for the long sightlines has another explanation. In addition, the relatively high signal-to-noise ratio of the HD41161 data allows us to place constraints on the f-values of some neutral chlorine transitions, present in the FUSE bandpass, for which only theoretical values are available.Comment: Accepted for publication on the Dec 10 2006 issue of the Ap

    Thermal Pressures in Neutral Clouds inside the Local Bubble, as Determined from C I Fine-Structure Excitations

    Get PDF
    High-resolution spectra covering absorption features from interstellar C I were recorded for four early-type stars with spectrographs on HST, in a program to measure the fine-structure excitation of this atom within neutral clouds inside or near the edge of the Local Bubble, a volume of hot (T ~ 10^6 K) gas that emits soft x-rays and extends out to about 100 pc away from the Sun. The excited levels of C I are populated by collisions, and the ratio of excited atoms to those in the ground level give a measure of the local thermal pressure. Absorptions from the two lowest levels of C I were detected toward alpha Del and delta Cyg, while only marginal indications of excited C I were obtained for gamma Ori, and lambda Lup. Along with temperature limits derived by other means, the C I fine-structure populations indicate that for the clouds in front of gamma Ori, delta Cyg and alpha Del, 10^3 < p/k < 10^4 cm^{-3}K at about the +-1 sigma confidence level in each case. The results for lambda Lup are not as well constrained, but still consistent with the other three stars. The results indicate that the thermal pressures are below generally accepted estimates p/k > 10^4 cm^{-3}K for the Local Bubble, based on the strength of x-ray and EUV emission from the hot gas. This inequality of pressure for these neutral clouds and their surroundings duplicates a condition that exists for the local, partly-ionized cloud that surrounds the Sun. An appendix in the paper describes a direct method for determining and eliminating small spectral artifacts arising from variations of detector sensitivity with position.Comment: 33 pages, 7 figures, submitted to the Astrophysical Journa

    On the MBM12 Young Association

    Get PDF
    I present a comprehensive study of the MBM12 young association (MBM12A). By combining infrared (IR) photometry from the Two-Micron All-Sky Survey (2MASS) survey with new optical imaging and spectroscopy, I have performed a census of the MBM12A membership that is complete to 0.03 Msun (H~15) for a 1.75deg X 1.4deg field encompassing the MBM12 cloud. I find five new members with masses of 0.1-0.4 Msun and a few additional candidates that have not been observed spectroscopically. From an analysis of optical and IR photometry for stars in the direction of MBM12, I identify M dwarfs in the foreground and background of the cloud. By comparing the magnitudes of these stars to those of local field dwarfs, I arrive at a distance modulus 7.2+/-0.5 (275 pc) to the MBM12 cloud; it is not the nearest molecular cloud and is not inside the local bubble of hot ionized gas as had been implied by previous distance estimates of 50-100 pc. I have also used Li strengths and H-R diagrams to constrain the absolute and relative ages of MBM12A and other young populations; these data indicate ages of 2 +3/-1 Myr for MBM12A and 10 Myr for the TW Hya and Eta Cha associations. MBM12A may be a slightly evolved version of the aggregates of young stars within the Taurus dark clouds (~1 Myr) near the age of the IC 348 cluster (~2 Myr).Comment: to be published in The Astrophysical Journal, 41 pages, 14 figures, also found at http://cfa-www.harvard.edu/sfgroup/preprints.htm
    corecore