23,082 research outputs found
Exotic Haldane Superfluid Phase of Soft-Core Bosons in Optical Lattices
We propose to realize an exotic Haldane superfluid (HSF) phase in an extended
Bose-Hubbard model on the two-leg ladder (i.e., a two-species mixture of
interacting bosons). The proposal is confirmed by means of large-scale quantum
Monte Carlo simulations, with a significant part of the ground-state phase
diagram being revealed. Most remarkably, the newly discovered HSF phase
features both superfluidity and the non-local topological Haldane order. The
effects induced by varying the number of legs are furthermore explored. Our
results shed light on how topological superfluid emerges in bosonic systems.Comment: 5 pages, 6 figures; accepted for publication in Physical Review B
(April 29, 2016
Localization and compactness of Operators on Fock Spaces
For , let be the Fock space induced by a
weight function satisfying . In this
paper, given we introduce the concept of weakly localized
operators on , we characterize the compact operators in the
algebra generated by weakly localized operators. As an application, for
we prove that an operator in the algebra generated by bounded
Toeplitz operators with symbols is compact on if
and only if its Berezin transform satisfies certain vanishing property at
. In the classical Fock space, we extend the Axler-Zheng condition on
linear operators , which ensures is compact on for all
possible .Comment: 23 Page
Overview of recent work on self-healing in cementitious materials
Cracks, especially microcracks, in concrete are of paramount importance to the durability and the service life of cementitious composite. However, the self-healing technology, including autogenous healing and autonomous healing, is expected to be one of effective tools to overcome this boring problem. In this paper, we focus on the autogenous healing of concrete material and a few of recent works of autonomous healing are also mentioned. The durability and the mechanical properties improved by the self-healing phenomenon are reviewed from experimental investigation and practical experience. Several aspects of researches, such as autogenous healing capability of an innovative concrete incorporated geo-materials, self-healing of engineered cementitious composite and fire-damaged concrete, effect of mineral and admixtures on mechanism and efficiency of self-healing concrete are summarized to evaluate the presented progresses in the past several years and to outline the perspective for the further developments. Moreover, a special emphasis is given on the analytical models and computer simulation method of the researches of self-healing in cementitious materials.<br><br>Las fisuras, y sobre todo las microfisuras, tienen una gran repercusión en la durabilidad y en la vida útil de los materiales cementantes. Ante este problema, la tecnologÃa de la autorreparación, tanto autógena como autónoma, se presenta como una solución eficaz. El artÃculo se centra en la reparación autógena del hormigón, asà como en algunos trabajos recientes sobre la reparación autónoma. Se describen las mejoras de las propiedades de durabilidad y de resistencia que proporciona la técnica del hormigón autorreparable, tanto desde el punto de vista de la investigación experimental como del de la experiencia práctica. A fin de evaluar los avances logrados en los últimos años y de trazar las grandes lÃneas de desarrollo futuro, se resumen varios de los aspectos investigados: capacidad de reparación de un hormigón innovador que incorpora geomateriales; autorreparabilidad tanto de los compuestos cementantes tecnológicos como de los hormigones que han sufrido daños por incendio; influencia de los aditivos minerales en el mecanismo y eficacia del hormigón autorreparable. Además, se destaca el papel de los modelos analÃticos y los métodos de simulación informática en la investigación de los materiales cementantes autorreparables
Electron-doped phosphorene: A potential monolayer superconductor
We predict by first-principles calculations that the electron-doped
phosphorene is a potential BCS-like superconductor. The stretching modes at the
Brillouin-zone center are remarkably softened by the electron-doping, which
results in the strong electron-phonon coupling. The superconductivity can be
introduced by a doped electron density () above
cm, and may exist over the liquid helium temperature when cm. The maximum critical temperature is predicted to be
higher than 10 K. The superconductivity of phosphorene will significantly
broaden the applications of this novel material
Directionally asymmetric self-assembly of cadmium sulfide nanotubes using porous alumina nanoreactors: Need for chemohydrodynamic instability at the nanoscale
We explore nanoscale hydrodynamical effects on synthesis and self-assembly of
cadmium sulfide nanotubes oriented along one direction. These nanotubes are
synthesized by horizontal capillary flow of two different chemical reagents
from opposite directions through nanochannels of porous anodic alumina which
are used primarily as nanoreactors. We show that uneven flow of different
chemical precursors is responsible for directionally asymmetric growth of these
nanotubes. On the basis of structural observations using scanning electron
microscopy, we argue that chemohydrodynamic convective interfacial instability
of multicomponent liquid-liquid reactive interface is necessary for sustained
nucleation of these CdS nanotubes at the edges of these porous nanochannels
over several hours. However, our estimates clearly suggest that classical
hydrodynamics cannot account for the occurrence of such instabilities at these
small length scales. Therefore, we present a case which necessitates further
investigation and understanding of chemohydrodynamic fluid flow through
nanoconfined channels in order to explain the occurrence of such interfacial
instabilities at nanometer length scales.Comment: 26 pages, 6 figures; http://www.iiserpune.ac.in/researchhighlight
Nuclear modification factor in intermediate-energy heavy-ion collisions
The transverse momentum dependent nuclear modification factors (NMF), namely
, is investigated for protons produced in Au + Au at 1 GeV within
the framework of the isospin-dependent quantum molecular dynamics (IQMD) model.
It is found that the radial collective motion during the expansion stage
affects the NMF at low transverse momentum a lot. By fitting the transverse
mass spectra of protons with the distribution function from the Blast-Wave
model, the magnitude of radial flow can be extracted. After removing the
contribution from radial flow, the can be regarded as a thermal one
and is found to keep unitary at transverse momentum lower than 0.6 GeV/c and
enhance at higher transverse momentum, which can be attributed to Cronin
effect.Comment: 8 pages, 5 figures; aceepted by Physics Letters
- …