2,973 research outputs found

    Reducing Satellite Interference to Radio Telescopes Using Beacons

    Full text link
    This paper proposes the transmission of beacon signals to alert potential interferers of an ongoing or impending passive sensing measurement. We focus on the interference from Low-Earth Orbiting (LEO) satellites to a radio-telescope. We compare the beacon approach with two versions of Radio Quiet Zones (RQZs): fixed quiet zones on the ground and in the sky, and dynamic quiet zones that vary across satellites. The beacon-assisted approach can potentially exploit channel reciprocity, which accounts for short-term channel variations between the satellite and radio telescope. System considerations associated with beacon design and potential schemes for beacon transmission are discussed. The probability of excessive Radio Frequency Interference (RFI) at the radio telescope (outage probability) and the fraction of active links in the satellite network are used as performance metrics. Numerical simulations compare the performance of the approaches considered, and show that the beacon approach enables more active satellite links relative to quiet zones for a given outage probability

    Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si(100) surface using scanning tunnelling microscopy

    Full text link
    We have developed a method for depositing graphene monolayers and bilayers with minimum lateral dimensions of 2-10 nm by the mechanical exfoliation of graphite onto the Si(100)-2x1:H surface. Room temperature, ultra-high vacuum (UHV) tunnelling spectroscopy measurements of nanometer-sized single-layer graphene reveal a size dependent energy gap ranging from 0.1-1 eV. Furthermore, the number of graphene layers can be directly determined from scanning tunnelling microscopy (STM) topographic contours. This atomistic study provides an experimental basis for probing the electronic structure of nanometer-sized graphene which can assist the development of graphene-based nanoelectronics.Comment: Accepted for publication in Nanotechnolog

    Error Rate of the Kane Quantum Computer CNOT Gate in the Presence of Dephasing

    Full text link
    We study the error rate of CNOT operations in the Kane solid state quantum computer architecture. A spin Hamiltonian is used to describe the system. Dephasing is included as exponential decay of the off diagonal elements of the system's density matrix. Using available spin echo decay data, the CNOT error rate is estimated at approsimately 10^{-3}.Comment: New version includes substantial additional data and merges two old figures into one. (12 pages, 6 figures

    X-ray photoemission study of NiS_{2-x}Se_x (x = 0.0 - 1.2)

    Full text link
    Electronic structure of NiS_{2-x}Se_x system has been investigated for various compositions (x) using x-ray photoemission spectroscopy. An analysis of the core level as well as the valence band spectra of NiS_2 in conjunction with many-body cluster calculations provides a quantitative description of the electronic structure of this compound. With increasing Se content, the on-site Coulomb correlation strength (U) does not change, while the band width W of the system increases, driving the system from a covalent insulating state to a pd-metallic state.Comment: 19 pages, 6 figures, To appear in Phys. Rev. B, 200

    Hydration interactions: aqueous solvent effects in electric double layers

    Full text link
    A model for ionic solutions with an attractive short-range pair interaction between the ions is presented. The short-range interaction is accounted for by adding a quadratic non-local term to the Poisson-Boltzmann free energy. The model is used to study solvent effects in a planar electric double layer. The counter-ion density is found to increase near the charged surface, as compared with the Poisson-Boltzmann theory, and to decrease at larger distances. The ion density profile is studied analytically in the case where the ion distribution near the plate is dominated only by counter-ions. Further away from the plate the density distribution can be described using a Poisson-Boltzmann theory with an effective surface charge that is smaller than the actual one.Comment: 11 Figures in 13 files + LaTex file. 20 pages. Accepted to Phys. Rev. E. Corrected typos and reference

    Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping

    Full text link
    In the present paper we propose a doubly orbitally degenerate narrow-band model with correlated hopping. The peculiarity of the model is taking into account the matrix element of electron-electron interaction which describes intersite hoppings of electrons. In particular, this leads to the concentration dependence of the effective hopping integral. The cases of the strong and weak Hund's coupling are considered. By means of a generalized mean-field approximation the single-particle Green function and quasiparticle energy spectrum are calculated. Metal-insulator transition is studied in the model at different integer values of the electron concentration. With the help of the obtained energy spectrum we find energy gap width and criteria of metal-insulator transition.Comment: minor revisions, published in Phys. Rev.

    Optical Conductivity in Mott-Hubbard Systems

    Full text link
    We study the transfer of spectral weight in the optical spectra of a strongly correlated electron system as a function of temperature and interaction strength. Within a dynamical mean field theory of the Hubbard model that becomes exact in the limit of large lattice coordination, we predict an anomalous enhancement of spectral weight as a function of temperature in the correlated metallic state and report on experimental measurements which agree with this prediction in V2O3V_2O_3. We argue that the optical conductivity anomalies in the metal are connected to the proximity to a crossover region in the phase diagram of the model.Comment: 12 pages and 4 figures, to appear in Phys. Rev. Lett., v 75, p 105 (1995

    Like-charge attraction through hydrodynamic interaction

    Full text link
    We demonstrate that the attractive interaction measured between like-charged colloidal spheres near a wall can be accounted for by a nonequilibrium hydrodynamic effect. We present both analytical results and Brownian dynamics simulations which quantitatively capture the one-wall experiments of Larsen and Grier (Nature 385, p. 230, 1997).Comment: 10 pages, 4 figure

    Electronic and phononic states of the Holstein-Hubbard dimer of variable length

    Full text link
    We consider a model Hamiltonian for a dimer including all the electronic one- and two-body terms consistent with a single orbital per site, a free Einstein phonon term, and an electron-phonon coupling of the Holstein type. The bare electronic interaction parameters were evaluated in terms of Wannier functions built from Gaussian atomic orbitals. An effective polaronic Hamiltonian was obtained by an unrestricted displaced-oscillator transformation, followed by evaluation of the phononic terms over a squeezed-phonon variational wave function. For the cases of quarter-filled and half-filled orbital, and over a range of dimer length values, the ground state was identified by simultaneously and independently optimizing the orbital shape, the phonon displacement and the squeezing effect strength. As the dimer length varies, we generally find discontinuous changes of both electronic and phononic states, accompanied by an appreciable renormalization of the effective electronic interactions across the transitions, due to the equilibrium shape of the wave functions strongly depending on the phononic regime and on the type of ground state.Comment: 11 pages, RevTeX, 10 PostScript figures; to appear in Phys. Rev.
    • …
    corecore