1,475 research outputs found

    A Class of Renormalization Group Invariant Scalar Field Cosmologies

    Full text link
    We present a class of scalar field cosmologies with a dynamically evolving Newton parameter GG and cosmological term Λ\Lambda. In particular, we discuss a class of solutions which are consistent with a renormalization group scaling for GG and Λ\Lambda near a fixed point. Moreover, we propose a modified action for gravity which includes the effective running of GG and Λ\Lambda near the fixed point. A proper understanding of the associated variational problem is obtained upon considering the four-dimensional gradient of the Newton parameter.Comment: 10 pages, RevTex4, no figures, to appear on GR

    The MEV project: design and testing of a new high-resolution telescope for Muography of Etna Volcano

    Get PDF
    The MEV project aims at developing a muon telescope expressly designed for the muography of Etna Volcano. In particular, one of the active craters in the summit area of the volcano would be a suitable target for this experiment. A muon tracking telescope with high imaging resolution was built and tested during 2017. The telescope is a tracker based on extruded scintillating bars with WLS fibres and featuring an innovative read-out architecture. It is composed of three XY planes with a sensitive area of \SI{1}{m^2}; the angular resolution does not exceeds \SI{0.4}{\milli\steradian} and the total angular aperture is about ±\pm\SI{45}{\degree}. A special effort concerned the design of mechanics and electronics in order to meet the requirements of a detector capable to work in a hostile environment such as the top of a tall volcano, at a far distance from any facility. The test phase started in January 2017 and ended successfully at the end of July 2017. An extinct volcanic crater (the Monti Rossi, in the village of Nicolosi, about 15km from Catania) is the target of the measurement. The detector acquired data for about 120 days and the preliminary results are reported in this work

    Comparison between adenosine triphosphate bioluminescence and aerobic colony count to assess surface sanitation in the hospital environment

    Get PDF
    Background: Adenosine triphosphate bioluminescence produced by the firefly luciferase has been successfully introduced to verify cleaning procedures in the food industry according to the Hazard Analysis Critical Control Point program. Our aim was to evaluate the reliability of bioluminescence as a tool to monitor the effectiveness of sanitation in healthcare settings, in comparison with the microbiological gold standard. Methods: 614 surfaces of various material were randomly sampled in Policlinico University Hospital units in Palermo, Italy, to detect adenosine triphosphate bioluminescence and aerobic colony count. Linear regression model and Pearson correlation coefficient were used to estimate the relationship between the two variables of the study. Results: Aerobic colony count median was 1.71 colony forming units/cm2 (interquartile range = 3.8), whereas adenosine triphosphate median was 59.9 relative light units/cm2 (interquartile range = 128.3). Pearson coefficient R2 was 0.09. Sensitivity and specificity of bioluminescence test with respect to microbiology were 46% and 71%, whereas positive predictive value and negative predictive value were 53% and 65%, respectively. Conclusion: According to our results, there seemed to be no linear correlation between aerobic colony count and adenosine triphosphate values, suggesting that current bioluminescence technology has not any proportional relationships with culturable microbes contaminating environmental surfaces in health-care settings

    Noise Induced Phenomena in the Dynamics of Two Competing Species

    Get PDF
    Noise through its interaction with the nonlinearity of the living systems can give rise to counter-intuitive phenomena. In this paper we shortly review noise induced effects in different ecosystems, in which two populations compete for the same resources. We also present new results on spatial patterns of two populations, while modeling real distributions of anchovies and sardines. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. We find noise induced phenomena such as quasi-deterministic oscillations, stochastic resonance, noise delayed extinction, and noise induced pattern formation. In addition, our theoretical results are validated with experimental findings. Specifically the results, obtained by a coupled map lattice model, well reproduce the spatial distributions of anchovies and sardines, observed in a marine ecosystem. Moreover, the experimental dynamical behavior of two competing bacterial populations in a meat product and the probability distribution at long times of one of them are well reproduced by a stochastic microbial predictive model.Comment: 23 pages, 8 figures; to be published in Math. Model. Nat. Phenom. (2016

    The Accelerated expansion of the Universe as a crossover phenomenon

    Get PDF
    We show that the accelerated expansion of the Universe can be viewed as a crossover phenomenon where the Newton constant and the Cosmological constant are actually scaling operators, dynamically evolving in the attraction basin of a non-Gaussian infrared fixed point, whose existence has been recently discussed. By linearization of the renormalized flow it is possible to evaluate the critical exponents, and it turns out that the approach to the fixed point is ruled by a marginal and a relevant direction. A smooth transition between the standard Friedmann--Lemaitre--Robertson--Walker (FLRW) cosmology and the observed accelerated expansion is then obtained, so that ΩMΩΛ\Omega_M \approx \Omega_\Lambda at late times.Comment: 12 pages, latex, use bibtex. In the final version, the presentation has been improved, and new references have been adde

    Electrohydraulic Servomechanisms Affected by Multiple Failures: A Model-Based Prognostic Method Using Genetic Algorithms

    Get PDF
    In order to detect incipient failures due to a progressive wear of a primary flight command electro hydraulic actuator (EHA), prognostics could employ several approaches; the choice of the best ones is driven by the efficacy shown in failure detection, since not all the algorithms might be useful for the proposed purpose. In other words, some of them could be suitable only for certain applications while they could not give useful results for others. Developing a fault detection algorithm able to identify the precursors of the above mentioned EHA failure and its degradation pattern is thus beneficial for anticipating the incoming failure and alerting the maintenance crew so as to properly schedule the servomechanism replacement. The research presented in the paper was focused to develop a new prognostic procedure centered on the characterization of the state of health of a common electro-hydraulic actuator for primary command usage. It is based on an innovative model based fault detection and identification method (FDI) that makes use of deterministic and heuristic solvers in order to converge to the actual state of wear of the tested actuator. In particular, the proposed model takes in account three different types of progressive failures: the clogging of the first stage of the flapper-nozzle valve, the rising of friction between spool and sleeve and finally the rising of friction between jack and cylinder. To assess the robustness of the proposed technique, an appropriate simulation test environment was developed. The results showed an adequate robustness and confidence was gained in the ability to early identify an eventual EHA malfunctioning with low risk of false alarms or missed failures

    Renormalization group scale-setting from the action - a road to modified gravity theories

    Get PDF
    The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the renormalization group is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG corrected gravitational theories yields the effective f(R)f(R) modified gravity theories with negative powers of the Ricci scalar RR. The scale-setting at the level of the action at the non-gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in Ricci tensor.Comment: v1: 15 pages; v2: shortened to 10 pages, main results unchanged, published in Class. Quant. Gra

    A new genetic algorithm model-based prognostic approach applied to onboard electrohydraulic servomechanisms

    Get PDF
    The ever green solution of the electro hydraulic actuator (EHA) applications for the control of modern primary flight commands, justified by the superiority of hydraulic systems in furnishing more efficient solutions for power supplying in a controlled manner, brings us to focus on the need to make the EHA as efficient and reliable as possible. To this purpose, it must be noted that reliability of modern systems is increasingly more based on the valid support of diagnostics and prognostics; in fact, these two are the most robust instruments which mitigate life cycle costs without losing reliability and guarantee, in compliance with regulations, the bases for health management of integrated components, subsystems and systems. Developing a fault detection algorithm able to identify the precursors of EHA faults and their degradation patterns is thus beneficial for anticipating the incoming failure and alerting the maintenance crew so as to properly schedule the servomechanism replacement. About that, this paper proposes a new EHA model-based fault detection and identification method (FDI) that makes use of deterministic and heuristic solvers in order to converge to the actual state of wear of the tested actuator. The proposed FDI algorithm has been tested on three different types of progressive failures (the clogging of the first stage of the flapper-nozzle valve, the rising of friction between spool and sleeve and finally the rising of friction between jack and cylinder): to this purpose, a dedicated simulation test environment was developed. Results showed an adequate robustness and a suitable confidence was gained about its ability to early identify EHA malfunctions with low risk of false alarms or missed failures

    Fault Detection and Identification Method Based on Genetic Algorithms to Monitor Degradation of Electrohydraulic Servomechanisms

    Get PDF
    Electro Hydraulic Actuators (EHAs) keep their role as the leading solution for the control of current generation primary flight control systems: the main reason can be found in their high power to weight ratio, much better than other comparable technologies. To enhance efficiency and reliability of modern EHAs, it is possible to leverage the diagnostics and prognostics disciplines; these two tools allow reducing life cycle costs without losing reliability, and provide the bases for health management of integrated systems, in compliance with regulations. This paper is focused on the development of a fault detection algorithm able to identify the early signs of EHA faults, through the recognition of their precursors and related degradation patterns. Our methodology provides the advantage of anticipating incoming failures, triggering proper alerts for the maintenance team to schedule adequate corrective actions, such as the replacement of the degraded component. A new EHA model-based fault detection and identification (FDI) method is proposed; it is based on deterministic and heuristic solvers able to converge to the actual state of wear of the tested actuator. Three different progressive failure modes were chosen as test cases for the proposed FDI strategy: clogging of the first stage of the flapper-nozzle valve, spool-sleeve friction increase, and jack-cylinder friction increase. A dedicated simulation model was created for the purpose. The results highlighted that the method is adequate in robustness, since EHA malfunctions were identified with a low occurrence of false alarms or missed failures
    corecore