3,946 research outputs found

    Multilevel correlates of household anthropometric typologies in Colombian mothers and their infants

    Get PDF
    Background. The aim of this study was to establish the association of maternal, family, and contextual correlates of anthropometric typologies at the household level in Colombia using 2005 Demographic Health Survey (DHS/ENDS) data.Methods. Household-level information from mothers 18-49 years old and their children less than 5 years old was included. Stunting and overweight were assessed for each child. Mothers were classified according to their body mass index. Four anthropometric typologies at the household level were constructed: normal, underweight, overweight, and dual burden. Four three-level [households (n = 8598) nested within municipalities (n = 226), nested within states (n = 32)] hierarchical polytomous logistic models were developed. Household log-odds of belonging to one of the four anthropometric categories, holding 'normal' as the reference group, were obtained.Results. This study found that anthropometric typologies were associated with maternal and family characteristics of maternal age, parity, maternal education, and wealth index. Higher municipal living conditions index was associated with a lower likelihood of underweight typology and a higher likelihood of overweight typology. Higher population density was associated with a lower likelihood of overweight typology.Conclusion. Distal and proximal determinants of the various anthropometric typologies at the household level should be taken into account when framing policies and designing interventions to reduce malnutrition in Colombia. Copyright © The Author(s) 2018

    Transform-limited single photons from a single quantum dot

    Full text link
    A semiconductor quantum dot mimics a two-level atom. Performance as a single photon source is limited by decoherence and dephasing of the optical transition. Even with high quality material at low temperature, the optical linewidths are a factor of two larger than the transform-limit. A major contributor to the inhomogeneous linewdith is the nuclear spin noise. We show here that the nuclear spin noise depends on optical excitation, increasing (decreasing) with increasing resonant laser power for the neutral (charged) exciton. Based on this observation, we discover regimes where we demonstrate transform-limited linewidths on both neutral and charged excitons even when the measurement is performed very slowly

    Impact and oviposition behaviour of Ageniaspis fuscicollis (Hymenoptera: Encyrtidae), a polyembryonic parasitoid of the apple ermine moth, Yponomeuta malinellus (Lepidoptera: Yponomeutidae)

    Get PDF
    The distribution and extent of parasitism of the apple ermine moth Yponomeuta malinellus Zeller by the polyembyronic encyrtid parasitoid Ageniaspis fuscicollis (Dalman) were examined in a three year field study and related to oviposition behaviour in the laboratory. Ageniaspis fuscicollis attacks egg batches of its host and kills the final instar larvae, which feed gregariously from within tents. Host population densities in the field were low, from 1.5 to 2.2 tents per 100 leaf clusters, and parasitism increased from 7.8% to 18% over the three year period. Parasitism was independent of host density at the whole tree scale, but at the individual tent scale, the probability of a tent containing parasitized host larvae increased and percent parasitism decreased with the number of host larvae per tent. Observations on the oviposition behaviour of A. fuscicollis in the laboratory revealed that parasitoids distributed their eggs randomly within host egg batches. On average, they spent almost two hours on an egg batch and laid 44% of their egg load of 132 eggs into the first egg batch visited, leading to a mean of 1.4 eggs laid per host egg through frequent self-superparasitism of hosts. The percentage of eggs receiving one or more ovipositions was independent of the size of an egg batch, contradicting our field observations of inverse density dependence. Factors that might account for the differences in rates of parasitism and attack distributions between laboratory and field data are discusse

    Epitaxial lift-off for solid-state cavity quantum electrodynamics

    Full text link
    We present a new approach to incorporate self-assembled quantum dots into a Fabry-P\'{e}rot-like microcavity. Thereby a 3λ\lambda/4 GaAs layer containing quantum dots is epitaxially removed and attached by van der Waals bonding to one of the microcavity mirrors. We reach a finesse as high as 4,100 with this configuration limited by the reflectivity of the dielectric mirrors and not by scattering at the semiconductor - mirror interface, demonstrating that the epitaxial lift-off procedure is a promising procedure for cavity quantum electrodynamics in the solid state. As a first step in this direction, we demonstrate a clear cavity-quantum dot interaction in the weak coupling regime with a Purcell factor in the order of 3. Estimations of the coupling strength via the Purcell factor suggests that we are close to the strong coupling regime.Comment: 6 pages, 4 figure

    Electrically-tunable hole g-factor of an optically-active quantum dot for fast spin rotations

    Full text link
    We report a large g-factor tunability of a single hole spin in an InGaAs quantum dot via an electric field. The magnetic field lies in the in-plane direction x, the direction required for a coherent hole spin. The electrical field lies along the growth direction z and is changed over a large range, 100 kV/cm. Both electron and hole g-factors are determined by high resolution laser spectroscopy with resonance fluorescence detection. This, along with the low electrical-noise environment, gives very high quality experimental results. The hole g-factor g_xh depends linearly on the electric field Fz, dg_xh/dFz = (8.3 +/- 1.2)* 10^-4 cm/kV, whereas the electron g-factor g_xe is independent of electric field, dg_xe/dFz = (0.1 +/- 0.3)* 10^-4 cm/kV (results averaged over a number of quantum dots). The dependence of g_xh on Fz is well reproduced by a 4x4 k.p model demonstrating that the electric field sensitivity arises from a combination of soft hole confining potential, an In concentration gradient and a strong dependence of material parameters on In concentration. The electric field sensitivity of the hole spin can be exploited for electrically-driven hole spin rotations via the g-tensor modulation technique and based on these results, a hole spin coupling as large as ~ 1 GHz is expected to be envisaged.Comment: 8 pages, 4 figure

    Mesoscale theory of grains and cells: crystal plasticity and coarsening

    Full text link
    Solids with spatial variations in the crystalline axes naturally evolve into cells or grains separated by sharp walls. Such variations are mathematically described using the Nye dislocation density tensor. At high temperatures, polycrystalline grains form from the melt and coarsen with time: the dislocations can both climb and glide. At low temperatures under shear the dislocations (which allow only glide) form into cell structures. While both the microscopic laws of dislocation motion and the macroscopic laws of coarsening and plastic deformation are well studied, we hitherto have had no simple, continuum explanation for the evolution of dislocations into sharp walls. We present here a mesoscale theory of dislocation motion. It provides a quantitative description of deformation and rotation, grounded in a microscopic order parameter field exhibiting the topologically conserved quantities. The topological current of the Nye dislocation density tensor is derived from a microscopic theory of glide driven by Peach-Koehler forces between dislocations using a simple closure approximation. The resulting theory is shown to form sharp dislocation walls in finite time, both with and without dislocation climb.Comment: 5 pages, 3 figure

    Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage

    Get PDF
    A biexciton in a semiconductor quantum dot is a source of polarization-entangled photons with high potential for implementation in scalable systems. Several approaches for non-resonant, resonant and quasi-resonant biexciton preparation exist, but all have their own disadvantages, for instance low fidelity, timing jitter, incoherence or sensitivity to experimental parameters. We demonstrate a coherent and robust technique to generate a biexciton in an InGaAs quantum dot with a fidelity close to one. The main concept is the application of rapid adiabatic passage to the ground state-exciton-biexciton system. We reinforce our experimental results with simulations which include a microscopic coupling to phonons.Comment: Main manuscript 5 pages and 4 figures, Supplementary Information 5 pages and 3 figures, accepted as a Rapid Communication in PRB. arXiv admin note: text overlap with arXiv:1701.0130

    Micro-plasticity and intermittent dislocation activity in a simplified micro structural model

    Full text link
    Here we present a model to study the micro-plastic regime of a stress-strain curve. In this model an explicit dislocation population represents the mobile dislocation content and an internal shear-stress field represents a mean-field description of the immobile dislocation content. The mobile dislocations are constrained to a simple dipolar mat geometry and modelled via a dislocation dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal function of distance along the mat direction. The latter, defined by a periodic length and a shear-stress amplitude, represents a pre-existing micro-structure. These model parameters, along with the mobile dislocation density, are found to admit a diversity of micro-plastic behaviour involving intermittent plasticity in the form of a scale-free avalanche phenomenon, with an exponent for the strain burst magnitude distribution similar to those seen in experiment and more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in Materials Science and Engineering

    High resolution coherent population trapping on a single hole spin in a semiconductor

    Get PDF
    We report high resolution coherent population trapping on a single hole spin in a semiconductor quantum dot. The absorption dip signifying the formation of a dark state exhibits an atomic physics-like dip width of just 10 MHz. We observe fluctuations in the absolute frequency of the absorption dip, evidence of very slow spin dephasing. We identify this process as charge noise by, first, demonstrating that the hole spin g-factor in this configuration (in-plane magnetic field) is strongly dependent on the vertical electric field, and second, by characterizing the charge noise through its effects on the optical transition frequency. An important conclusion is that charge noise is an important hole spin dephasing process
    • …
    corecore