41 research outputs found

    Addition to "Nanostars carrying multifunctional neurotrophic dendrimers protect neurons in preclinical in vitro models of neurodegenerative disorders".

    Get PDF
    In the original version of this article (p. 47457), some acknowledgments were not included. In the revised Acknowledgments section provided below, we additionally provide The REC reference for the ethical approval of the human astrocyte isolation, an acknowledgment to Dr. Alize Proust at the Francis Crick Institute for establishing the triple coculture BBB model used in this study, and the reference and the grant number for the source of the human fetal material. This does not affect the results or conclusions of our work

    Quantification of blood-brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge

    Get PDF
    Nanoparticles capable of penetrating the blood-brain barrier (BBB) will greatly advance the delivery of therapies against brain disorders. Carbon nanotubes hold great potential as delivery vehicles due to their high aspect-ratio and cell-penetrating ability. Studies have shown multiwalled carbon nanotubes (MWCNT) cross the BBB, however they have largely relied on labelling methods to track and quantify transport, or on individual electron microscopy images to qualitatively assess transcytosis. Therefore, new direct and quantitative methods, using well-defined and unlabelled MWCNT, are needed to compare BBB translocation of different MWCNT types. Using highly controlled anionic (-), cationic (+) and non-ionic (0) functionalized MWCNT (fMWCNT), we correlate UV-visible spectroscopy with quantitative transmission electron microscopy, quantified from c. 270 endothelial cells, to examine cellular uptake, BBB transport and neurotoxicity of unlabelled fMWCNT. Our results demonstrate that: i) a large fraction of cationic and non-ionic, but not anionic fMWCNT become trapped at the luminal brain endothelial cell membrane; ii) despite high cell association, fMWCNT uptake by brain endothelial cells is low (< 1.5% ID) and does not correlate with BBB translocation, iii) anionic fMWCNT have highest transport levels across an in vitro model of the human BBB compared to non-ionic or cationic nanotubes; and iv) fMWCNT are not toxic to hippocampal neurons at relevant abluminal concentrations; however, fMWCNT charge has an effect on carbon nanotube neurotoxicity at higher fMWCNT concentrations. This quantitative combination of microscopy and spectroscopy, with cellular assays, provides a crucial strategy to predict brain penetration efficiency and neurotoxicity of unlabelled MWCNT and other nanoparticle technologies relevant to human health

    Prognostic relevance of a T-type calcium channels gene signature in solid tumours: A correlation ready for clinical validation

    Get PDF
    BackgroundT-type calcium channels (TTCCs) mediate calcium influx across the cell membrane. TTCCs regulate numerous physiological processes including cardiac pacemaking and neuronal activity. In addition, they have been implicated in the proliferation, migration and differentiation of tumour tissues. Although the signalling events downstream of TTCC-mediated calcium influx are not fully elucidated, it is clear that variations in the expression of TTCCs promote tumour formation and hinder response to treatment.MethodsWe examined the expression of TTCC genes (all three subtypes; CACNA-1G, CACNA-1H and CACNA-1I) and their prognostic value in three major solid tumours (i.e. gastric, lung and ovarian cancers) via a publicly accessible database.ResultsIn gastric cancer, expression of all the CACNA genes was associated with overall survival (OS) among stage I-IV patients (all pConclusionsAlterations in CACNA gene expression are linked to tumour prognosis. Gastric cancer represents the most promising setting for further evaluation

    The role of TG2 in regulating S100A4-mediated mammary tumour cell migration

    Get PDF
    The importance of S100A4, a Ca2+-binding protein, in mediating tumour cell migration, both intracellularly and extracellularly, is well documented. Tissue transglutaminase (TG2) a Ca2+-dependent protein crosslinking enzyme, has also been shown to enhance cell migration. Here by using the well characterised non-metastatic rat mammary R37 cells (transfected with empty vector) and highly metastatic KP1 cells (R37 cells transfected with S100A4), we demonstrate that inhibition of TG2 either by TG2 inhibitors or transfection of cells with TG2 shRNA block S100A4-accelerated cell migration in the KP1cells and in R37 cells treated with exogenous S100A4. Cell migration was also blocked by the treatment with the non-cell permeabilizing TG2 inhibitor R294, in the human breast cancer cell line MDA-MB-231 (Clone 16, which has a high level of TG2 expression). Inhibition was paralleled by a decrease in S100A4 polymer formation. co-immunoprecipitation and Far Western blotting assays and cross-linking assays showed not only the direct interaction between TG2 and S100A4, but also confirmed S100A4 as a substrate for TG2. Using specific functional blocking antibodies, a targeting peptide and a recombinant protein as a competitive treatment, we revealed the involvement of syndecan-4 and a5ß1 integrin co-signalling pathways linked by activation of PKCa in this TG2 and S100A4-mediated cell migration. We propose a mechanism for TG2-regulated S100A4-related mediated cell migration, which is dependent on TG2 crosslinking

    Relationships between Gene Expression and Brain Wiring in the Adult Rodent Brain

    Get PDF
    We studied the global relationship between gene expression and neuroanatomical connectivity in the adult rodent brain. We utilized a large data set of the rat brain “connectome” from the Brain Architecture Management System (942 brain regions and over 5000 connections) and used statistical approaches to relate the data to the gene expression signatures of 17,530 genes in 142 anatomical regions from the Allen Brain Atlas. Our analysis shows that adult gene expression signatures have a statistically significant relationship to connectivity. In particular, brain regions that have similar expression profiles tend to have similar connectivity profiles, and this effect is not entirely attributable to spatial correlations. In addition, brain regions which are connected have more similar expression patterns. Using a simple optimization approach, we identified a set of genes most correlated with neuroanatomical connectivity, and find that this set is enriched for genes involved in neuronal development and axon guidance. A number of the genes have been implicated in neurodevelopmental disorders such as autistic spectrum disorder. Our results have the potential to shed light on the role of gene expression patterns in influencing neuronal activity and connectivity, with potential applications to our understanding of brain disorders. Supplementary data are available at http://www.chibi.ubc.ca/ABAMS

    Joining S100 proteins and migration:for better or for worse, in sickness and in health

    Get PDF
    The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel

    The S100A4 protein signals through the ErbB4 receptor to promote neuronal survival.

    No full text
    Understanding the mechanisms of neurodegeneration is crucial for development of therapies to treat neurological disorders. S100 proteins are extensively expressed in the injured brain but S100's role and signalling in neural cells remain elusive. We recently demonstrated that the S100A4 protein protects neurons in brain injury and designed S100A4-derived peptides mimicking its beneficial effects. Here we show that neuroprotection by S100A4 involves the growth factor family receptor ErbB4 and its ligand Neuregulin 1 (NRG), key regulators of neuronal plasticity and implicated in multiple brain pathologies. The neuroprotective effect of S100A4 depends on ErbB4 expression and the ErbB4 signalling partners ErbB2/Akt, and is reduced by functional blockade of NRG/ErbB4 in cell models of neurodegeneration. We also detect binding of S100A4 with ErbB1 (EGFR) and ErbB3. S100A4-derived peptides interact with, and signal through ErbB, are neuroprotective in primary and immortalized dopaminergic neurons, and do not affect cell proliferation/motility - features which make them promising as potential neuroprotectants. Our data suggest that the S100- ErbB axis may be an important mechanism regulating neuronal survival and plasticit

    Molecular rotors report on changes of live cell plasma membrane microviscosity upon interaction with beta-amyloid aggregates

    No full text
    Amyloid deposits of aggregated beta-amyloid Aβ(1–42) peptides are a pathological hallmark of Alzheimer's disease. Aβ(1–42) aggregates are known to induce biophysical alterations in cells, including disruption of plasma membranes. We investigated the microviscosity of plasma membranes upon interaction with oligomeric and fibrillar forms of Aβ(1–42). Viscosity-sensing fluorophores termed molecular rotors were utilised to directly measure the microviscosities of giant plasma membrane vesicles (GPMVs) and plasma membranes of live SH-SY5Y and HeLa cells. The fluorescence lifetimes of membrane-inserting BODIPY-based molecular rotors revealed a decrease in bilayer microviscosity upon incubation with Aβ(1–42) oligomers, while fibrillar Aβ(1–42) did not significantly affect the microviscosity of the bilayer. In addition, we demonstrate that the neuroprotective peptide H3 counteracts the microviscosity change induced by Aβ(1–42) oligomers, suggesting the utility of H3 as a neuroprotective therapeutic agent in neurodegenerative disorders and indicating that ligand-induced membrane stabilisation may be a possible mechanism of neuroprotection during neurodegenerative disorders such as Alzheimer's disease

    Microscopic viscosity of neuronal plasma membranes measured using fluorescent molecular rotors: effects of oxidative stress and neuroprotection.

    No full text
    Molecular mobility in neuronal plasma membranes is a crucial factor in brain function. Microscopic viscosity is an important parameter that determines molecular mobility. This study presents the first direct measurements of the microviscosity of plasma membranes of live neurons. Microviscosity maps were obtained using fluorescence lifetime imaging of environment-sensing dyes termed 'molecular rotors'. Neurons were investigated both in the basal state and following common neurodegenerative stimuli, excitotoxicity or oxidative stress. Both types of neurotoxic challenges induced microviscosity decrease in cultured neurons, and the oxidant-induced membrane fluidification was counteracted by the wide-spectrum neuroprotectant, the H3 peptide. These results provide new insights into molecular mobility in neuronal membranes, paramount for basic brain function, and suggest that preservation of membrane stability may be an important aspect of neuroprotection in brain insults and neurodegenerative disorders

    Frizzled-7-targeted delivery of zinc oxide nanoparticles to drug-resistant breast cancer cells

    No full text
    There is a need for novel strategies to treat aggressive breast cancer subtypes and overcome drug resistance. ZnO nanoparticles (NPs) have potential in cancer therapy due to their ability to potently and selectively induce cancer cell apoptosis. Here, we tested the in vitro chemotherapeutic efficacy of ZnONPs loaded via a mesoporous silica nanolayer (MSN) towards drug-sensitive breast cancer cells (MCF-7: estrogen receptor-positive, CAL51: triple-negative) and their drug-resistant counterparts (MCF-7TX, CALDOX). ZnO-MSNs were coated on to gold nanostars (AuNSs) for future imaging capabilities in the NIR-II range. Electron and confocal microscopy showed that MSN-ZnO-AuNSs accumulated close to the plasma membrane and were internalized by cells. High-resolution electron microscopy showed that MSN coating degraded outside the cells, releasing ZnONPs that interacted with cell membranes. MSN-ZnO-AuNSs efficiently reduced the viability of all cell lines, and CAL51/CALDOX cells were more susceptible than MCF7/MCF-7-TX cells. MSN-ZnO-AuNSs were then conjugated with the antibody to Frizzled-7 (FZD-7), the receptor upregulated by several breast cancer cells. We used the disulphide (S-S) linker that could be cleaved with a high concentration of glutathione normally observed within cancer cells, releasing Zn2+ into the cytoplasm. FZD-7 targeting resulted in approximately three-fold amplified toxicity of MSN-ZnO-AuNSs towards the MCF-7TX drug-resistant cell line with the highest FZD-7 expression. This study shows that ZnO-MSs are promising tools to treat triple-negative and drug-resistant breast cancers and highlights the potential clinical utility of FZD-7 for delivery of nanomedicines and imaging probes specifically to these cancer types
    corecore