3,305 research outputs found
Decoherence and entropy of primordial fluctuations. I: Formalism and interpretation
We propose an operational definition of the entropy of cosmological
perturbations based on a truncation of the hierarchy of Green functions. The
value of the entropy is unambiguous despite gauge invariance and the
renormalization procedure. At the first level of truncation, the reduced
density matrices are Gaussian and the entropy is the only intrinsic quantity.
In this case, the quantum-to-classical transition concerns the entanglement of
modes of opposite wave-vectors, and the threshold of classicality is that of
separability. The relations to other criteria of classicality are established.
We explain why, during inflation, most of these criteria are not intrinsic. We
complete our analysis by showing that all reduced density matrices can be
written as statistical mixtures of minimal states, the squeezed properties of
which are less constrained as the entropy increases. Pointer states therefore
appear not to be relevant to the discussion. The entropy is calculated for
various models in paper II.Comment: 23 page
Disc formation in turbulent cloud cores: Circumventing the magnetic braking catastrophe
We present collapse simulations of strongly magnetised, 100 M_sun, turbulent
cloud cores. Around the protostars formed during the collapse Keplerian discs
with typical sizes of up to 100 AU build up in contrast to previous simulations
neglecting turbulence. Analysing the condensations in which the discs form, we
show that the magnetic flux loss is not sufficient to explain the build-up of
Keplerian discs. The average magnetic field is strongly inclined to the disc
which might reduce the magnetic braking efficiency. However, the main reason
for the reduced magnetic braking efficiency is the highly disordered magnetic
field in the surroundings of the discs. Furthermore, due to the lack of a
coherently rotating structure in the turbulent environment of the disc no
toroidal magnetic field necessary for angular momentum extraction can build up.
Simultaneously the angular momentum inflow remains high due to local shear
flows created by the turbulent motions. We suggest that the "magnetic braking
catastrophe" is an artefact of the idealised non-turbulent initial conditions
and that turbulence provides a natural mechanism to circumvent this problem.Comment: 4 pages, 2 figures. To appear in the proceedings of 'The Labyrinth of
Star Formation' (18-22 June 2012, Chania, Greece), published by Springe
Decoherence and entropy of primordial fluctuations II. The entropy budget
We calculate the entropy of adiabatic perturbations associated with a
truncation of the hierarchy of Green functions at the first non trivial level,
i.e. in a self-consistent Gaussian approximation. We give the equation
governing the entropy growth and discuss its phenomenology. It is parameterized
by two model-dependent kernels. We then examine two particular inflationary
models, one with isocurvature perturbations, the other with corrections due to
loops of matter fields. In the first model the entropy grows rapidely, while in
the second the state remains pure (at one loop).Comment: 28 page
Creation of Entanglement by Interaction with a Common Heat Bath
I show that entanglement between two qubits can be generated if the two
qubits interact with a common heat bath in thermal equilibrium, but do not
interact directly with each other. In most situations the entanglement is
created for a very short time after the interaction with the heat bath is
switched on, but depending on system, coupling, and heat bath, the entanglement
may persist for arbitrarily long times. This mechanism sheds new light on the
creation of entanglement. A particular example of two quantum dots in a closed
cavity is discussed, where the heat bath is given by the blackbody radiation.Comment: 4 revtex pages, 1 eps figure; replaced with published version; short
discussion on entanglement distillation adde
A large-scale evaluation framework for EEG deep learning architectures
EEG is the most common signal source for noninvasive BCI applications. For
such applications, the EEG signal needs to be decoded and translated into
appropriate actions. A recently emerging EEG decoding approach is deep learning
with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many
different architectures already published. Here we present a novel framework
for the large-scale evaluation of different deep-learning architectures on
different EEG datasets. This framework comprises (i) a collection of EEG
datasets currently including 100 examples (recording sessions) from six
different classification problems, (ii) a collection of different EEG decoding
algorithms, and (iii) a wrapper linking the decoders to the data as well as
handling structured documentation of all settings and (hyper-) parameters and
statistics, designed to ensure transparency and reproducibility. As an
applications example we used our framework by comparing three publicly
available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow
ConvNet, and two versions of EEGNet. We also show how our framework can be used
to study similarities and differences in the performance of different decoding
methods across tasks. We argue that the deep learning EEG framework as
described here could help to tap the full potential of deep learning for BCI
applications.Comment: 7 pages, 3 figures, final version accepted for presentation at IEEE
SMC 2018 conferenc
The General Correlation Function in the Schwinger Model on a Torus
In the framework of the Euclidean path integral approach we derive the exact
formula for the general N-point chiral densities correlator in the Schwinger
model on a torusComment: 17 pages, misprints corrected, references adde
Decoherence: Concepts and Examples
We give a pedagogical introduction to the process of decoherence - the
irreversible emergence of classical properties through interaction with the
environment. After discussing the general concepts, we present the following
examples: Localisation of objects, quantum Zeno effect, classicality of fields
and charges in QED, and decoherence in gravity theory. We finally emphasise the
important interpretational features of decoherence.Comment: 24 pages, LATEX, 9 figures, needs macro lamuphys.sty, to appear in
the Proceedings of the 10th Born Symposiu
Comment on the equivalence of Bakamjian-Thomas mass operators in different forms of dynamics
We discuss the scattering equivalence of the generalized Bakamjian-Thomas
construction of dynamical representations of the Poincar\'e group in all of
Dirac's forms of dynamics. The equivalence was established by Sokolov in the
context of proving that the equivalence holds for models that satisfy cluster
separability. The generalized Bakamjian Thomas construction is used in most
applications, even though it only satisfies cluster properties for systems of
less than four particles. Different forms of dynamics are related by unitary
transformations that remove interactions from some infinitesimal generators and
introduce them to other generators. These unitary transformation must be
interaction dependent, because they can be applied to a non-interacting
generator and produce an interacting generator. This suggests that these
transformations can generate complex many-body forces when used in many-body
problems. It turns out that this is not the case. In all cases of interest the
result of applying the unitary scattering equivalence results in
representations that have simple relations, even though the unitary
transformations are dynamical. This applies to many-body models as well as
models with particle production. In all cases no new many-body operators are
generated by the unitary scattering equivalences relating the different forms
of dynamics. This makes it clear that the various calculations used in
applications that emphasize one form of the dynamics over another are
equivalent. Furthermore, explicit representations of the equivalent dynamical
models in any form of dynamics are easily constructed. Where differences do
appear is when electromagnetic probes are treated in the one-photon exchange
approximation. This approximation is different in each of Dirac's forms of
dynamics.Comment: 6 pages, no figure
Decoherence in QED at finite temperature
We consider a wave packet of a charged particle passing through a cavity
filled with photons at temperature T and investigate its localization and
interference properties. It is shown that the wave packet becomes localized and
the interference disappears with an exponential speed after a sufficiently long
path through the cavity.Comment: Latex, 10 page
- …