189,681 research outputs found
On the critical dissipative quasi-geostrophic equation
The 2D quasi-geostrophic (QG) equation is a two dimensional model of the 3D
incompressible Euler equations. When dissipation is included in the model then
solutions always exist if the dissipation's wave number dependence is
super-linear. Below this critical power the dissipation appears to be
insufficient. For instance, it is not known if the critical dissipative QG
equation has global smooth solutions for arbitrary large initial data. In this
paper we prove existence and uniqueness of global classical solutions of the
critical dissipative QG equation for initial data that have small
norm. The importance of an smallness condition is due to the fact
that is a conserved norm for the non-dissipative QG equation and
is non-increasing on all solutions of the dissipative QG., irrespective of
size.Comment: 12 page
Recommended from our members
Operational solar forecasting for the real-time market
Despite the significant progress made in solar forecasting over the last decade, most of the proposed models cannot be readily used by independent system operators (ISOs). This article proposes an operational solar forecasting algorithm that is closely aligned with the real-time market (RTM) forecasting requirements of the California ISO (CAISO). The algorithm first uses the North American Mesoscale (NAM) forecast system to generate hourly forecasts for a 5-h period that are issued 12 h before the actual operating hour, satisfying the lead-time requirement. Subsequently, the world's fastest similarity search algorithm is adopted to downscale the hourly forecasts generated by NAM to a 15-min resolution, satisfying the forecast-resolution requirement. The 5-h-ahead forecasts are repeated every hour, following the actual rolling update rate of CAISO. Both deterministic and probabilistic forecasts generated using the proposed algorithm are empirically evaluated over a period of 2 years at 7 locations in 5 climate zones
Mixed triplet and singlet pairing in multicomponent ultracold fermion systems with dipolar interactions
The symmetry properties of the Cooper pairing problem for multi-component
ultra-cold dipolar molecular systems are investigated. The dipolar anisotropy
provides a natural and robust mechanism for both triplet and singlet Cooper
pairing to first order in the interaction strength. With a purely dipolar
interaction, the triplet -like polar pairing is the most dominant. A
short-range attractive interaction can enhance the singlet pairing to be nearly
degenerate with the triplet pairing. We point out that these two pairing
channels can mix by developing a relative phase of , thus
spontaneously breaking time-reversal symmetry. We also suggest the possibility
of such mixing of triplet and singlet pairing in other systems.Comment: accepted by Phys. Rev.
Dual Fabry-Perot filter for measurement of CO rotational spectra: design and application to the CO spectrum of Venus
We present the design of a harmonic resonant filter that can be used with a Fourier transform spectrometer (FTS) for simultaneous measurement of a series of lines in the CO rotational ladder. To enable studies of both broad CO absorptions in Venus and modestly red-shifted CO emission from external galaxies, relatively broad (approximately 10-30-GHz FWHM) transmission passbands are desirable. Because a single low-finesse Fabry Perot (FP) etalon has insufficient interline rejection, a dual-FP etalon was considered. Such a design provides significantly better interband rejection and somewhat more flattopped transmission spikes. A prototype filter of this type, made of two thin silicon disks spaced by an air gap, has been constructed and used with our FTS at the Caltech Submillimeter Observatory for simultaneous measurement of the four submillimeter CO transitions in the atmosphere of Venus that are accessible from the ground
Resonant Tidal Excitations of Inertial Modes in Coalescing Neutron Star Binaries
We study the effect of resonant tidal excitation of inertial modes in neutron
stars during binary inspiral. For spin frequencies less than 100 Hz, the phase
shift in the gravitational waveform associated with the resonance is small and
does not affect the matched filtering scheme for gravitational wave detection.
For higher spin frequencies, the phase shift can become significant. Most of
the resonances take place at orbital frequencies comparable to the spin
frequency, and thus significant phase shift may occur only in the
high-frequency band (hundreds of Hertz) of gravitational wave. The exception is
a single odd-paity mode, which can be resonantly excited for misaligned
spin-orbit inclinations, and may occur in the low-frequency band (tens of
Hertz) of gravitational wave and induce significant (>> 1 radian) phase shift.Comment: Minor changes. 6 pages. Phys. Rev. D. in press (volume 74, issue 2
Recommended from our members
Bioinspired Multifunctional Anti-icing Hydrogel
The recent anti-icing strategies in the state of the art mainly focused on three aspects: inhibiting ice nucleation, preventing ice propagation, and decreasing ice adhesion strength. However, it is has proved difficult to prevent ice nucleation and propagation while decreasing adhesion simultaneously, due to their highly distinct, even contradictory design principles. In nature, anti-freeze proteins (AFPs) offer a prime example of multifunctional integrated anti-icing materials that excel in all three key aspects of the anti-icing process simultaneously by tuning the structures and dynamics of interfacial water. Here, inspired by biological AFPs, we successfully created a multifunctional anti-icing material based on polydimethylsiloxane-grafted polyelectrolyte hydrogel that can tackle all three aspects of the anti-icing process simultaneously. The simplicity, mechanical durability, and versatility of these smooth hydrogel surfaces make it a promising option for a wide range of anti-icing applications
Development of a new instrument for direct skin friction measurements
A device developed for the direct measurement of wall shear stress generated by flows is described. Simple and symmetric in design with optional small moving mass and no internal friction, the features employed in the design eliminate most of the difficulties associated with the traditional floating element balances. The device is basically small and can be made in various sizes. Vibration problems associated with the floating element skin friction balances were found to be minimized due to the design symmetry and optional damping provided. The design eliminates or reduces the errors associated with conventional floating element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer, and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Dynamic measurements could be made in a limited range and measurements in liquids could be performed readily. Measurement made in the three different tunnels show excellent agreement with data obtained by the floating element devices and other techniques
- …