24,712 research outputs found

    Mach 5 inlet CFD and experimental results

    Get PDF
    An experimental research program was conducted in the NASA Lewis Research Center 10 x 10 ft supersonic wind tunnel. The 2-D inlet model was designed to study the Mach 3.0 to 5.0 speed range for an over-under turbojet plus ramjet propulsion system. The model was extensively instrumented to provide both analytical code validation data as well as inlet performance information. Support studies for the program include flow field predictions with both 3-D parabolized Navier-Stokes (PNS) and 3-D full Navier-Stokes (FNS) analytical codes. Analytical predictions and experimental results are compared

    Comparison of 3-D viscous flow computations of Mach 5 inlet with experimental data

    Get PDF
    A time marching 3-D full Navier-Stokes code, called PARC3D, is validated for an experimental Mach 5 inlet configuration using the data obtained in the 10 x 10 ft supersonic wind tunnel at the NASA Lewis Research Center. For the first time, a solution is obtained for this configuration with the actual geometry, the tunnel conditions, and all the bleed zones modeled in the computation. Pitot pressure profiles and static pressures at various locations in the inlet are compared with the corresponding experimental data. The effect of bleed zones, located in different places on the inlet walls, in eliminating the low energy vortical flow generated from the 3-D shock-boundary layer interaction is simulated very well even though some approximations are used in applying the bleed boundary conditions and in the turbulence model. A further detailed study of the effect of individual bleed ports is needed to understand fully the actual mechanism of efficiently eliminating the vortical flow from the inlet. A better turbulence model would help to improve the accuracy even further in predicting the corner flow boundary layer profiles

    Dispersion and decay of collective modes in neutron star cores

    Full text link
    We calculate the frequencies of collective modes of neutrons, protons and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and protons, which is not well characterized. The contribution of collective modes to the thermal conductivity is evaluated.Comment: 10 pages, 4 figure

    Viscous three-dimensional analyses for nozzles for hypersonic propulsion

    Get PDF
    A Navier-Stokes computer code was validated using a number of two- and three-dimensional configurations for both laminar and turbulent flows. The validation data covers a range of freestream Mach numbers from 3 to 14, includes wall pressures, velocity profiles, and skin friction. Nozzle flow fields computed for a generic scramjet nozzle from Mach 3 to 20, wall pressures, wall skin friction values, heat transfer values, and overall performance are presented. In addition, three-dimensional solutions obtained for two asymmetric, single expansion ramp nozzles at a pressure ratio of 10 consists of the internal expansion region in the converging/diverging sections and the external supersonic exhaust in a quiescent ambient environment. The fundamental characteristics that were captured successfully include expansion fans; Mach wave reflections; mixing layers; and nonsymmetrical, multiple inviscid cell, supersonic exhausts. Comparison with experimental data for wall pressure distributions at the center planes shows good agreement

    Spin Response and Neutrino Emissivity of Dense Neutron Matter

    Full text link
    We study the spin response of cold dense neutron matter in the limit of zero momentum transfer, and show that the frequency dependence of the long-wavelength spin response is well constrained by sum-rules and the asymptotic behavior of the two-particle response at high frequency. The sum-rules are calculated using Auxiliary Field Diffusion Monte Carlo technique and the high frequency two-particle response is calculated for several nucleon-nucleon potentials. At nuclear saturation density, the sum-rules suggest that the strength of the spin response peaks at ω≃\omega \simeq 40--60 MeV, decays rapidly for ω≥\omega \geq 100 MeV, and has a sizable strength below 40 MeV. This strength at relatively low energy may lead to enhanced neutrino production rates in dense neutron-rich matter at temperatures of relevance to core-collapse supernova.Comment: 11 pages, 4 figures. Minor change. Published versio

    The Effectiveness of using a Non-Platinum Catalyst for a Proton Exchange Membrane Fuel Cell (PEMFC)

    Full text link
    The effectiveness of using a non-platinum material combination for a Proton Exchange Membrane Fuel Cell was studied. Three MEAs were characterized, two with a platinum catalyst loading of 0.1 mg/cm2 and 0.3 mg/cm2 and one with catalyst loading of 2 mg/cm2 of silver (Ag) particles on the anode side and a combination of 1.5 mg/cm2 Ag, 1.5mg/cm2 ruthenium and iridium oxide on the cathode side which was purchased from FuelCelletc in the USA. Hydrogen and oxygen was applied on either side of the non-platinum MEA to provide an additional test sample (MEA 4). The active area of the cell was 9 cm2. The performance of the Pt loaded PEMFC was characterized first to ensure the reliability of experimental setup and testing procedure. The tests were run at 0.5 bar at a temperature of 25 °C and 35 °C. Hydrogen and oxygen volume flow rates were varied between 19 – 95 ml/min. The best open circuit voltage achieved for MEA 3 and 4 was 0.486 V and 0.34 V respectively. A maximum current density of 15x10-6 and 50x10-6 A/cm2 was achieved. The maximum power density found was 2.3x10-6 and 1.99x10-6 W/cm2. The identification of the particles size and dispersion was performed by scanning electron microscope
    • …
    corecore