330 research outputs found
Dry period plane of energy: Effects on glucose tolerance in transition dairy cows
Overfeeding energy in the dry period can affect glucose metabolism and the energy balance of transition dairy cows with potential detrimental effects on the ability to successfully adapt to early lactation. The objectives of this study were to investigate the effect of different dry cow feeding strategies on glucose tolerance and on resting concentrations of blood glucose, glucagon, insulin, nonesterified fatty acids (NEFA), and β-hydroxybutyrate (BHB) in the peripartum period. Cows entering second or greater lactation were enrolled at dry-off (57 d before expected parturition) into 1 of 3 treatment groups following a randomized block design: cows that received a total mixed ration (TMR) formulated to meet but not exceed energy requirements during the dry period (n = 28, controlled energy); cows that received a TMR supplying approximately 150% of energy requirements during the dry period (n = 28, high energy); and cows that were fed the same diet as the controlled energy group for the first 28 d, after which the TMR was formulated to supply approximately 125% of energy requirements until calving (n = 28, intermediate energy). Intravenous glucose tolerance tests (IVGTT) with rapid administration of 0.25 g of glucose/kg of body weight were performed 28 and 10 d before expected parturition, as well as at 4 and 21 d after calving. Area under the curve for insulin and glucose, maximal concentration and time to half-maximal concentration of insulin and glucose, and clearance rates were calculated. Insulin resistance (IR) indices were calculated from baseline samples obtained during IVGTT and Spearman rank correlations determined between IVGTT parameters and IR indices. Treatment did not affect IVGTT parameters at any of the 4 time points. Correlation between IR indices and IVGTT parameters was generally poor. Overfeeding cows energy in excess of predicted requirements by approximately 50% during the entire dry period resulted in decreased postpartum basal plasma glucose and insulin, as well as increased glucagon, BHB, and NEFA concentrations after calving compared with cows fed a controlled energy diet during the dry period. In conclusion, overfeeding energy during the entire dry period or close-up period alone did not affect glucose tolerance as assessed by IVGTT but energy uptake during the dry period was associated with changes in peripartal resting concentrations of glucose, as well as postpartum insulin, glucagon, NEFA, and BHB concentrations
Separable and non-separable multi-field inflation and large non-Gaussianity
In this paper we provide a general framework based on formalism to
estimate the cosmological observables pertaining to the cosmic microwave
background radiation for non-separable potentials, and for generic \emph{end of
inflation} boundary conditions. We provide analytical and numerical solutions
to the relevant observables by decomposing the cosmological perturbations along
the curvature and the isocurvature directions, \emph{instead of adiabatic and
entropy directions}. We then study under what conditions large bi-spectrum and
tri-spectrum can be generated through phase transition which ends inflation. In
an illustrative example, we show that large and
can be obtained for the case of separable and
non-separable inflationary potentials.Comment: 21 pages, 6 figure
Itinerant Ferromagnetism in the Periodic Anderson Model
We introduce a novel mechanism for itinerant ferromagnetism, based on a
simple two-band model. The model includes an uncorrelated and dispersive band
hybridized with a second band which is narrow and correlated. The simplest
Hamiltonian containing these ingredients is the Periodic Anderson Model (PAM).
Using quantum Monte Carlo and analytical methods, we show that the PAM and an
extension of it contain the new mechanism and exhibit a non-saturated
ferromagnetic ground state in the intermediate valence regime. We propose that
the mechanism, which does not assume an intra atomic Hund's coupling, is
present in both the iron group and in some f electron compounds like
Ce(Rh_{1-x} Ru_x)_3 B_2, La_x Ce_{1-x} Rh_3 B_2 and the uranium
monochalcogenides US, USe, and UTe
Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat Yellow Rust Pathogen that associates with processing bodies
Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular mechanisms underlying the virulence of these pathogens remain elusive, due to the limited availability of suitable molecular genetic research tools. Notably, the inability to perform high-throughput analyses of candidate virulence proteins (also known as effectors) impairs progress. We previously established a pipeline for the fast-forward screens of rust fungal candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves selecting candidate effectors in silico and performing cell biology and protein-protein interaction assays in planta to gain insight into the putative functions of candidate effectors. In this study, we used this pipeline to identify and characterize sixteen candidate effectors from the wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors targeted a specific plant subcellular compartment or protein complex, providing valuable information on their putative functions in plant cells. One candidate effector, PST02549, accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decapping, degradation, and storage. PST02549 also associates with the P-body-resident ENHANCER OF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen effectors
Caribbean Spiny Lobster Fishery Is Underpinned by Trophic Subsidies from Chemosynthetic Primary Production
Data files are deposited with Figshare and are available at: https://dx.doi.org/10.6084/ m9.figshare.4225334
Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition
Detailed knowledge of the physical and chemical properties and sources of particles that form clouds is especially important in pristine areas like the Arctic, where particle concentrations are often low and observations are sparse. Here, we present in situ cloud and aerosol measurements from the central Arctic Ocean in August–September 2018 combined with air parcel source analysis. We provide direct experimental evidence that Aitken mode particles (particles with diameters ≲70 nm) significantly contribute to cloud condensation nuclei (CCN) or cloud droplet residuals, especially after the freeze-up of the sea ice in the transition toward fall. These Aitken mode particles were associated with air that spent more time over the pack ice, while size distributions dominated by accumulation mode particles (particles with diameters ≳70 nm) showed a stronger contribution of oceanic air and slightly different source regions. This was accompanied by changes in the average chemical composition of the accumulation mode aerosol with an increased relative contribution of organic material toward fall. Addition of aerosol mass due to aqueous-phase chemistry during in-cloud processing was probably small over the pack ice given the fact that we observed very similar particle size distributions in both the whole-air and cloud droplet residual data. These aerosol–cloud interaction observations provide valuable insight into the origin and physical and chemical properties of CCN over the pristine central Arctic Ocean
Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling
Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.This work was funded by the Portuguese Foundation for Science and Technology (www.fct.pt) in the frame of the project Cork Oak EST Consortium SOBREIRO/0034/2009. Post-doc grant to MS was supported by the Portuguese Foundation for Science and Technology (SFRH/BPD/25661/2005). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …