8,707 research outputs found
Symmetry Representations in the Rigged Hilbert Space Formulation of Quantum Mechanics
We discuss some basic properties of Lie group representations in rigged
Hilbert spaces. In particular, we show that a differentiable representation in
a rigged Hilbert space may be obtained as the projective limit of a family of
continuous representations in a nested scale of Hilbert spaces. We also
construct a couple of examples illustrative of the key features of group
representations in rigged Hilbert spaces. Finally, we establish a simple
criterion for the integrability of an operator Lie algebra in a rigged Hilbert
space
Hypersurface Bohm-Dirac models
We define a class of Lorentz invariant Bohmian quantum models for N entangled
but noninteracting Dirac particles. Lorentz invariance is achieved for these
models through the incorporation of an additional dynamical space-time
structure provided by a foliation of space-time. These models can be regarded
as the extension of Bohm's model for N Dirac particles, corresponding to the
foliation into the equal-time hyperplanes for a distinguished Lorentz frame, to
more general foliations. As with Bohm's model, there exists for these models an
equivariant measure on the leaves of the foliation. This makes possible a
simple statistical analysis of position correlations analogous to the
equilibrium analysis for (the nonrelativistic) Bohmian mechanics.Comment: 17 pages, 3 figures, RevTex. Completely revised versio
The density matrix in the de Broglie-Bohm approach
If the density matrix is treated as an objective description of individual
systems, it may become possible to attribute the same objective significance to
statistical mechanical properties, such as entropy or temperature, as to
properties such as mass or energy. It is shown that the de Broglie-Bohm
interpretation of quantum theory can be consistently applied to density
matrices as a description of individual systems. The resultant trajectories are
examined for the case of the delayed choice interferometer, for which Bell
appears to suggest that such an interpretation is not possible. Bell's argument
is shown to be based upon a different understanding of the density matrix to
that proposed here.Comment: 15 pages, 4 figure
Solving the measurement problem: de Broglie-Bohm loses out to Everett
The quantum theory of de Broglie and Bohm solves the measurement problem, but
the hypothetical corpuscles play no role in the argument. The solution finds a
more natural home in the Everett interpretation.Comment: 20 pages; submitted to special issue of Foundations of Physics, in
honour of James T. Cushin
The hidden geometric character of relativistic quantum mechanics
The presentation makes use of geometric algebra, also known as Clifford
algebra, in 5-dimensional spacetime. The choice of this space is given the
character of first principle, justified solely by the consequences that can be
derived from such choice and their consistency with experimental results. Given
a metric space of any dimension, one can define monogenic functions, the
natural extension of analytic functions to higher dimensions; such functions
have null vector derivative and have previously been shown by other authors to
play a decisive role in lower dimensional spaces. All monogenic functions have
null Laplacian by consequence; in an hyperbolic space this fact leads
inevitably to a wave equation with plane-like solutions. This is also true for
5-dimensional spacetime and we will explore those solutions, establishing a
parallel with the solutions of the Dirac equation. For this purpose we will
invoke the isomorphism between the complex algebra of 4x4 matrices, also known
as Dirac's matrices. There is one problem with this isomorphism, because the
solutions to Dirac's equation are usually known as spinors (column matrices)
that don't belong to the 4x4 matrix algebra and as such are excluded from the
isomorphism. We will show that a solution in terms of Dirac spinors is
equivalent to a plane wave solution. Just as one finds in the standard
formulation, monogenic functions can be naturally split into positive/negative
energy together with left/right ones. This split is provided by geometric
projectors and we will show that there is a second set of projectors providing
an alternate 4-fold split. The possible implications of this alternate split
are not yet fully understood and are presently the subject of profound
research.Comment: 29 pages. Small changes in V3 suggested by refere
Topological Black Holes in Quantum Gravity
We derive the black hole solutions with horizons of non-trivial topology and
investigate their properties in the framework of an approach to quantum gravity
being an extension of Bohm's formulation of quantum mechanics. The solutions we
found tend asymptotically (for large ) to topological black holes. We also
analyze the thermodynamics of these space-times.Comment: 4pages, no figures, plain LaTe
Irreversible Quantum Mechanics in the Neutral K-System
The neutral Kaon system is used to test the quantum theory of resonance
scattering and decay phenomena. The two dimensional Lee-Oehme-Yang theory with
complex Hamiltonian is obtained by truncating the complex basis vector
expansion of the exact theory in Rigged Hilbert space. This can be done for K_1
and K_2 as well as for K_S and K_L, depending upon whether one chooses the
(self-adjoint, semi-bounded) Hamiltonian as commuting or non-commuting with CP.
As an unexpected curiosity one can show that the exact theory (without
truncation) predicts long-time 2 pion decays of the neutral Kaon system even if
the Hamiltonian conserves CP.Comment: 36 pages, 1 PostScript figure include
Typicality vs. probability in trajectory-based formulations of quantum mechanics
Bohmian mechanics represents the universe as a set of paths with a
probability measure defined on it. The way in which a mathematical model of
this kind can explain the observed phenomena of the universe is examined in
general. It is shown that the explanation does not make use of the full
probability measure, but rather of a suitable set function deriving from it,
which defines relative typicality between single-time cylinder sets. Such a set
function can also be derived directly from the standard quantum formalism,
without the need of an underlying probability measure. The key concept for this
derivation is the {\it quantum typicality rule}, which can be considered as a
generalization of the Born rule. The result is a new formulation of quantum
mechanics, in which particles follow definite trajectories, but which is only
based on the standard formalism of quantum mechanics.Comment: 24 pages, no figures. To appear in Foundation of Physic
Measurement of the total energy of an isolated system by an internal observer
We consider the situation in which an observer internal to an isolated system
wants to measure the total energy of the isolated system (this includes his own
energy, that of the measuring device and clocks used, etc...). We show that he
can do this in an arbitrarily short time, as measured by his own clock. This
measurement is not subjected to a time-energy uncertainty relation. The
properties of such measurements are discussed in detail with particular
emphasis on the relation between the duration of the measurement as measured by
internal clocks versus external clocks.Comment: 7 pages, 1 figur
On the Flux-Across-Surfaces Theorem
The quantum probability flux of a particle integrated over time and a distant
surface gives the probability for the particle crossing that surface at some
time. We prove the free Flux-Across-Surfaces Theorem, which was conjectured by
Combes, Newton and Shtokhamer, and which relates the integrated quantum flux to
the usual quantum mechanical formula for the cross section. The integrated
quantum flux is equal to the probability of outward crossings of surfaces by
Bohmian trajectories in the scattering regime.Comment: 13 pages, latex, 1 figure, very minor revisions, to appear in Letters
in Mathematical Physics, Vol. 38, Nr.
- âŠ