880 research outputs found

    Bulk viscosity of strange quark matter: Urca versus non-leptonic processes

    Full text link
    A general formalism for calculating the bulk viscosity of strange quark matter is developed. Contrary to the common belief that the non-leptonic processes alone give the dominant contribution to the bulk viscosity, the inclusion of the Urca processes is shown to play an important role at intermediate densities when the characteristic r-mode oscillation frequencies are not too high. The interplay of non-leptonic and Urca processes is analyzed in detailComment: 9 pages, 4 figures, v2: revised figures, no change in result

    Cosmological constant and Euclidean space from nonperturbative quantum torsion

    Full text link
    Heisenberg's nonperturbative quantization technique is applied to the nonpertrubative quantization of gravity. An infinite set of equations for all Green's functions is obtained. An approximation is considered where: (a) the metric remains as a classical field; (b) the affine connection can be decomposed into classical and quantum parts; (c) the classical part of the affine connection are the Christoffel symbols; (d) the quantum part is the torsion. Using a scalar and vector fields approximation it is shown that nonperturbative quantum effects gives rise to a cosmological constant and an Euclidean solution.Comment: title is changed. arXiv admin note: text overlap with arXiv:1201.106

    The Kerr theorem and multiparticle Kerr-Schild solutions

    Full text link
    We discuss and prove an extended version of the Kerr theorem which allows one to construct exact solutions of the Einstein-Maxwell field equations from a holomorphic generating function FF of twistor variables. The exact multiparticle Kerr-Schild solutions are obtained from generating function of the form F=ikFi,F=\prod_i^k F_i, where FiF_i are partial generating functions for the spinning particles i=1...k i=1...k. Solutions have an unusual multi-sheeted structure. Twistorial structures of the i-th and j-th particles do not feel each other, forming a type of its internal space. Gravitational and electromagnetic interaction of the particles occurs via the light-like singular twistor lines. As a result, each particle turns out to be `dressed' by singular pp-strings connecting it to other particles. We argue that this solution may have a relation to quantum theory and to quantum gravity.Comment: 13 pages, 4 figures, revtex. Expressions for electromagnetic field are correcte

    Pseudoscalar Goldstone bosons in the color-flavor locked phase at moderate densities

    Full text link
    The properties of the pseudoscalar Goldstone bosons in the color-flavor locked phase at moderate densities are studied within a model of the Nambu--Jona-Lasinio type. The Goldstone bosons are constructed explicitly by solving the Bethe-Salpeter equation for quark-quark scattering in random phase approximation. Main focus of our investigations are (i) the weak decay constant in the chiral limit, (ii) the masses of the flavored (pseudo-) Goldstone bosons for non-zero but equal quark masses, (iii) their masses and effective chemical potentials for non-equal quark masses, and (iv) the onset of kaon condensation. We compare our results with the predictions of the low-energy effective field theory. The deviations from results obtained in the weak-coupling limit are discussed in detail.Comment: 18 pages, 12 figure

    Nonlinear Realization of the Local Conform-Affine Symmetry Group for Gravity in the Composite Fiber Bundle Formalism

    Full text link
    A gauge theory of gravity based on a nonlinear realization (NLR) of the local Conform-Affine (CA) group of symmetry transformations is presented. The coframe fields and gauge connections of the theory are obtained. The tetrads and Lorentz group metric are used to induce a spacetime metric. The inhomogenously transforming (under the Lorentz group) connection coefficients serve as gravitational gauge potentials used to define covariant derivatives accommodating minimal coupling of matter and gauge fields. On the other hand, the tensor valued connection forms serve as auxillary dynamical fields associated with the dilation, special conformal and deformational (shear) degrees of freedom inherent in the bundle manifold. The bundle curvature of the theory is determined. Boundary topological invariants are constructed. They serve as a prototype (source free) gravitational Lagrangian. The Bianchi identities, covariant field equations and gauge currents are obtained.Comment: 24 pages. to appear in IJGMM

    Color-flavor locked superconductor in a magnetic field

    Full text link
    We study the effects of moderately strong magnetic fields on the properties of color-flavor locked color superconducting quark matter in the framework of the Nambu-Jona-Lasinio model. We find that the energy gaps, which describe the color superconducting pairing as well as the magnetization, are oscillating functions of the magnetic field. Also, we observe that the oscillations of the magnetization can be so strong that homogeneous quark matter becomes metastable for a range of parameters. We suggest that this points to the possibility of magnetic domains or other types of magnetic inhomogeneities in the quark cores of magnetars.Comment: 12 pages, 3 figures. Version accepted for publication in Phys. Rev.

    Study of Instanton Contributions to Moments of Nucleon Spin-Dependent Structure Functions

    Get PDF
    Instantons are the natural mechanism in non-perturbative QCD to remove helicity from valence quarks and transfer it to gluons and quark-antiquark pairs. To understand the extent to which instantons explain the so-called "spin crisis" in the nucleon, we calculate moments of spin-dependent structure functions in quenched QCD and compare them with the results obtained with cooled configurations from which essentially all gluon contributions except instantons have been removed. Preliminary results are presented.Comment: LATTICE98(matrixelement), 3 pages, 1 figur

    Gluonic phases, vector condensates, and exotic hadrons in dense QCD

    Get PDF
    We study the dynamics in phases with vector condensates of gluons (gluonic phases) in dense two-flavor quark matter. These phases yield an example of dynamics in which the Higgs mechanism is provided by condensates of gauge (or gauge plus scalar) fields. Because vacuum expectation values of spatial components of vector fields break the rotational symmetry, it is naturally to have a spontaneous breakdown both of external and internal symmetries in this case. In particular, by using the Ginzburg-Landau approach, we establish the existence of a gluonic phase with both the rotational symmetry and the electromagnetic U(1) being spontaneously broken. In other words, this phase describes an anisotropic medium in which the color and electric superconductivities coexist. It is shown that this phase corresponds to a minimum of the Ginzburg-Landau potential and, unlike the two-flavor superconducting (2SC) phase, it does not suffer from the chromomagnetic instability. The dual (confinement) description of its dynamics is developed and it is shown that there are light exotic vector hadrons in the spectrum, some of which condense. Because most of the initial symmetries in this system are spontaneously broken, its dynamics is very rich.Comment: 33 pages, RevTeX; v.2: Published PRD versio
    corecore