615 research outputs found

    Diffuse cosmic rays shining in the Galactic center: A novel interpretation of H.E.S.S. and Fermi-LAT gamma-ray data

    Get PDF
    We present a novel interpretation of the Îł\gamma-ray diffuse emission measured by Fermi-LAT and H.E.S.S. in the Galactic center (GC) region and the Galactic ridge (GR). In the first part we perform a data-driven analysis based on PASS8 Fermi-LAT data: we extend down to few GeV the spectra measured by H.E.S.S. and infer the primary cosmic-ray (CR) radial distribution between 0.1 and 3 TeV. In the second part we adopt a CR transport model based on a position-dependent diffusion coefficient. Such behavior reproduces the radial dependence of the CR spectral index recently inferred from the Fermi-LAT observations. We find that the bulk of the GR emission can be naturally explained by the interaction of the diffuse steady-state Galactic CR sea with the gas present in the Central Molecular Zone. Although our results leave room for a residual radial-dependent emission associated with a central source, the relevance of the large-scale background prevents from a solid evidence of a GC Pevatron.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    Hard Cosmic Ray Sea in the Galactic Center: a consistent interpretation of H.E.S.S. and Fermi-LAT Îł\gamma-ray data

    Full text link
    We present a novel interpretation of the gamma-ray diffuse emission measured by H.E.S.S. in the Galactic Center (GC) region and the Galactic ridge. Our starting base is an updated analysis of PASS8 Fermi-LAT data, which allows to extend down to few GeV the spectra measured by H.E.S.S. and to infer the primary CR radial distribution above 100 GeV. We compare those results with a CR transport model assuming a harder scaling of the diffusion coefficient with rigidity in the inner Galaxy. Such a behavior reproduces the radial dependence of the CR spectral index recently inferred from Fermi-LAT measurements in the inner GP. We find that, in this scenario, the bulk of the Galactic ridge emission can be naturally explained by the interaction of the diffuse, steady-state Galactic CR sea interacting with the gas present in the Central molecular zone. The evidence of a GC PeVatron is significantly weaker than that inferred adopting a conventional (softer) CR sea.Comment: Oral contribution to the International Cosmic Ray Conference (ICRC 2017), 12-20 July 2017, Bexco, Busan, Kore

    Ship self-propulsion performance prediction by using OpenFOAM and different simplified propeller models

    Get PDF
    Classic hydrodynamics-related ship design problems can nowadays be approached by CFD viscous solvers. Ship self-propulsion performance prediction represents one of the most interesting problems in this framework. The capabilities of CFD codes to resolve accurately the separate problems (open water propeller performance and hull resistance) have been demonstrated over the last decades. The complexity of the combined problem (and, in turn, the required computational time) has restricted its solution to research applications still far from everyday industrial practice. Some approaches have been developed to reduce the computational burden, based e.g. on simple actuator-disk theory or, recently, on BEM/RANS coupled solvers. In this respect, different approaches exploiting the open-source solver OpenFOAM are presented, focusing on the main self-propulsion parameters. In addition, a new numerical strategy able to provide more information compared to classical simplified approaches, is herein presented and validated against experimental measurements on the well-known Kriso Container Ship (KCS) test case

    Self-similar transmission properties of aperiodic Cantor potentials in gapped graphene

    Full text link
    We investigate the transmission properties of quasiperiodic or aperiodic structures based on graphene arranged according to the Cantor sequence. In particular, we have found self-similar behaviour in the transmission spectra, and most importantly, we have calculated the scalability of the spectra. To do this, we implement and propose scaling rules for each one of the fundamental parameters: generation number, height of the barriers and length of the system. With this in mind we have been able to reproduce the reference transmission spectrum, applying the appropriate scaling rule, by means of the scaled transmission spectrum. These scaling rules are valid for both normal and oblique incidence, and as far as we can see the basic ingredients to obtain self-similar characteristics are: relativistic Dirac electrons, a self-similar structure and the non-conservation of the pseudo-spin. This constitutes a reduction of the number of conditions needed to observe self-similarity in graphene-based structures, see D\'iaz-Guerrero et al. [D. S. D\'iaz-Guerrero, L. M. Gaggero-Sager, I. Rodr\'iguez-Vargas, and G. G. Naumis, arXiv:1503.03412v1, 2015]

    Hadronic interactions of primary cosmic rays with the FLUKA code

    Get PDF
    The measured fluxes of secondary particles produced by the interactions of cosmic rays with the astronomical environment represent a powerful tool to infer some properties of primary cosmic rays. In this work we investigate the production of secondary particles in inelastic hadronic interactions between several cosmic rays species of projectiles and different target nuclei of the interstellar medium. The yields of secondary particles have been calculated with the FLUKA simulation package, that provides with very good accuracy the energy distributions of secondary products in a large energy range. An application to the propagation and production of secondaries in the Galaxy is presented.Comment: 8 pages, 4 figures; Contribution to the 34th International Cosmic Ray Conference, July 30 to August 6, The Hague, Netherlands; fixing a typo in the y-axis label of Fig.

    Physics and application of photon number resolving detectors based on superconducting parallel nanowires

    Full text link
    The Parallel Nanowire Detector (PND) is a photon number resolving (PNR) detector which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. PNDs were fabricated on 3-4 nm thick NbN films grown on MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. PNDs showed a counting rate of 80 MHz and a pulse duration as low as 660ps full width at half maximum (FWHM). Building the histograms of the photoresponse peak, no multiplication noise buildup is observable. Electrical and optical equivalent models of the device were developed in order to study its working principle, define design guidelines, and develop an algorithm to estimate the photon number statistics of an unknown light. In particular, the modeling provides novel insight of the physical limit to the detection efficiency and to the reset time of these detectors. The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise

    Agreement governing the activities of states on the Moon and other celestial bodies

    Get PDF
    The treaty on the Moon is not revolutionary but it embodies the legal rule for future activities of man on the Moon as opposed to the Space Treaty of 1967 which was too general. The new text is conservative but still allows some room for the developing States as in the law of the sea. The Moon is declared the "Common Heritage of Mankind" but the regime of exploitation of its resources is still blurred with imprecise guidelines still needing to be developed. The two superpowers cannot as in the past, ignore the rest of the world in the conquest of space and the fact that the U.N. is the depositary for ratifications, and not the two superpowers as in previous treaties, is the first sign of wider participation in the creation of Space Law
    • …
    corecore