7,804 research outputs found

    Positivity of Lyapunov exponents for a continuous matrix-valued Anderson model

    Full text link
    We study a continuous matrix-valued Anderson-type model. Both leading Lyapunov exponents of this model are proved to be positive and distinct for all ernergies in (2,+∞)(2,+\infty) except those in a discrete set, which leads to absence of absolutely continuous spectrum in (2,+∞)(2,+\infty). This result is an improvement of a previous result with Stolz. The methods, based upon a result by Breuillard and Gelander on dense subgroups in semisimple Lie groups, and a criterion by Goldsheid and Margulis, allow for singular Bernoulli distributions

    Inverse Scattering for Gratings and Wave Guides

    Full text link
    We consider the problem of unique identification of dielectric coefficients for gratings and sound speeds for wave guides from scattering data. We prove that the "propagating modes" given for all frequencies uniquely determine these coefficients. The gratings may contain conductors as well as dielectrics and the boundaries of the conductors are also determined by the propagating modes.Comment: 12 page

    Cosmic X-ray background and Earth albedo Spectra with Swift/BAT

    Full text link
    We use Swift/BAT Earth occultation data at different geomagnetic latitudes to derive a sensitive measurement of the Cosmic X-ray background (CXB) and of the Earth albedo emission in the 15--200 keV band. We compare our CXB spectrum with recent (INTEGRAL, BeppoSAX) and past results (HEAO-1) and find good agreement. Using an independent measurement of the CXB spectrum we are able to confirm our results. This study shows that the BAT CXB spectrum has a normalization ~8(+/-3)% larger than the HEAO-1 measurement. The BAT accurate Earth albedo spectrum can be used to predict the level of photon background for satellites in low Earth and mid inclination orbits.Comment: Accepted for publication in the Astrophysical Journal. 38 Pages, 16 Figures, 2 Table

    Physics Analysis Expert PAX: First Applications

    Full text link
    PAX (Physics Analysis Expert) is a novel, C++ based toolkit designed to assist teams in particle physics data analysis issues. The core of PAX are event interpretation containers, holding relevant information about and possible interpretations of a physics event. Providing this new level of abstraction beyond the results of the detector reconstruction programs, PAX facilitates the buildup and use of modern analysis factories. Class structure and user command syntax of PAX are set up to support expert teams as well as newcomers in preparing for the challenges expected to arise in the data analysis at future hadron colliders.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX, 10 eps figures. PSN THLT00

    The First INTEGRAL AGN Catalog

    Full text link
    We present the first INTEGRAL AGN catalog, based on observations performed from launch of the mission in October 2002 until January 2004. The catalog includes 42 AGN, of which 10 are Seyfert 1, 17 are Seyfert 2, and 9 are intermediate Seyfert 1.5. The fraction of blazars is rather small with 5 detected objects, and only one galaxy cluster and no star-burst galaxies have been detected so far. A complete subset consists of 32 AGN with a significance limit of 7 sigma in the INTEGRAL/ISGRI 20-40 keV data. Although the sample is not flux limited, the distribution of sources shows a ratio of obscured to unobscured AGN of 1.5 - 2.0, consistent with luminosity dependent unified models for AGN. Only four Compton-thick AGN are found in the sample. Based on the INTEGRAL data presented here, the Seyfert 2 spectra are slightly harder (Gamma = 1.95 +- 0.01) than Seyfert 1.5 (Gamma = 2.10 +- 0.02) and Seyfert 1 (Gamma = 2.11 +- 0.05).Comment: 17 pages, 12 figures, accepted for publication in Ap

    Global Bounds for the Lyapunov Exponent and the Integrated Density of States of Random Schr\"odinger Operators in One Dimension

    Full text link
    In this article we prove an upper bound for the Lyapunov exponent Îł(E)\gamma(E) and a two-sided bound for the integrated density of states N(E)N(E) at an arbitrary energy E>0E>0 of random Schr\"odinger operators in one dimension. These Schr\"odinger operators are given by potentials of identical shape centered at every lattice site but with non-overlapping supports and with randomly varying coupling constants. Both types of bounds only involve scattering data for the single-site potential. They show in particular that both Îł(E)\gamma(E) and N(E)−E/πN(E)-\sqrt{E}/\pi decay at infinity at least like 1/E1/\sqrt{E}. As an example we consider the random Kronig-Penney model.Comment: 9 page

    Determining the shape of defects in non-absorbing inhomogeneous media from far-field measurements

    Get PDF
    International audienceWe consider non-absorbing inhomogeneous media represented by some refraction index. We have developed a method to reconstruct, from far-field measurements, the shape of the areas where the actual index differs from a reference index. Following the principle of the Factorization Method, we present a fast reconstruction algorithm relying on far field measurements and near field values, easily computed from the reference index. Our reconstruction result is illustrated by several numerical test cases

    Low lying spectrum of weak-disorder quantum waveguides

    Full text link
    We study the low-lying spectrum of the Dirichlet Laplace operator on a randomly wiggled strip. More precisely, our results are formulated in terms of the eigenvalues of finite segment approximations of the infinite waveguide. Under appropriate weak-disorder assumptions we obtain deterministic and probabilistic bounds on the position of the lowest eigenvalue. A Combes-Thomas argument allows us to obtain so-called 'initial length scale decay estimates' at they are used in the proof of spectral localization using the multiscale analysis.Comment: Accepted for publication in Journal of Statistical Physics http://www.springerlink.com/content/0022-471

    Analysis of effective mobility and hall effect mobility in high-k based In0.75Ga0.25As metal-oxide-semiconductor high-electron-mobility transistors

    Get PDF
    We report an In0.75Ga0.25As metal-oxide-semiconductor high-electron-mobility transistor with a peak Hall mobility of 8300 cm(2)/Vs at a carrier density of 2 x 10(12) cm(-2). Comparison of split capacitance-voltage (CV) and Hall Effect measurements for the extracted electron mobility have shown that the split-CV can lead to an overestimation of the channel carrier concentration and a corresponding underestimation of electron mobility. An analysis of the electron density dependence versus gate voltage allows quantifying the inaccuracy of the split-CV technique. Finally, the analysis supported by multi-channel conduction simulations indicates presence of carriers spill over into the top InP barrier layer at high gate voltages. (C) 2011 American Institute of Physics. (doi: 10.1063/1.3665033

    A helium film coated quasi‐parabolic mirror to focus a beam of ultra‐cold spin polarized atomic hydrogen

    Full text link
    A 350 mK helium‐4‐coated mirror was used to increase the intensity of an ultra‐cold electron‐spin‐polarized atomic hydrogen beam. The mirror uses the observed specular reflection of atomic hydrogen from a superfluid‐helium‐covered surface. A quasi‐parabolic polished copper mirror was installed with its focus at the 5 mm diameter exit aperture of an atomic hydrogen stabilization cell in the gradient of an 8 T solenoid field. The four‐coned mirror shape, which was designed specifically for operation in the gradient, increased the beam intensity focused by a sextupole magnet into a compression tube detector by a factor of about 7.5.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87512/2/40_1.pd
    • 

    corecore