4,362 research outputs found
Numerical study of the hard-core Bose-Hubbard Model on an Infinite Square Lattice
We present a study of the hard-core Bose-Hubbard model at zero temperature on
an infinite square lattice using the infinite Projected Entangled Pair State
algorithm [Jordan et al., Phys. Rev. Lett. 101, 250602 (2008)]. Throughout the
whole phase diagram our values for the ground state energy, particle density
and condensate fraction accurately reproduce those previously obtained by other
methods. We also explore ground state entanglement, compute two-point
correlators and conduct a fidelity-based analysis of the phase diagram.
Furthermore, for illustrative purposes we simulate the response of the system
when a perturbation is suddenly added to the Hamiltonian.Comment: 8 pages, 6 figure
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependency
Increased coupling between critical infrastructure networks, such as power
and communication systems, will have important implications for the reliability
and security of these systems. To understand the effects of power-communication
coupling, several have studied interdependent network models and reported that
increased coupling can increase system vulnerability. However, these results
come from models that have substantially different mechanisms of cascading,
relative to those found in actual power and communication networks. This paper
reports on two sets of experiments that compare the network vulnerability
implications resulting from simple topological models and models that more
accurately capture the dynamics of cascading in power systems. First, we
compare a simple model of topological contagion to a model of cascading in
power systems and find that the power grid shows a much higher level of
vulnerability, relative to the contagion model. Second, we compare a model of
topological cascades in coupled networks to three different physics-based
models of power grids coupled to communication networks. Again, the more
accurate models suggest very different conclusions. In all but the most extreme
case, the physics-based power grid models indicate that increased
power-communication coupling decreases vulnerability. This is opposite from
what one would conclude from the coupled topological model, in which zero
coupling is optimal. Finally, an extreme case in which communication failures
immediately cause grid failures, suggests that if systems are poorly designed,
increased coupling can be harmful. Together these results suggest design
strategies for reducing the risk of cascades in interdependent infrastructure
systems
Doppler Lidar Sensor for Precision Navigation in GPS-Deprived Environment
Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle
Performance of statistical energy analysis
Statistical energy analysis (SEA) methods have been developed for high frequency modal analyses on random vibration environments. These SEA methods are evaluated by comparing analytical predictions to test results. Simple test methods are developed for establishing SEA parameter values. Techniques are presented, based on the comparison of the predictions with test values, for estimating SEA accuracy as a function of frequency for a general structure
High-Fidelity Flash Lidar Model Development
NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios
Navigation Doppler Lidar for Autonomous Ground, Aerial, and Space Vehicles
A Doppler lidar instrument has been developed and demonstrated for providing critical vector velocity and altitude/range data for autonomous precision navigation. Utilizing advanced component technologies, this lidar can be adapted to different types of vehicles
The Annual Cycle for Whimbrel Populations using the Western Atlantic Flyway
Many long-distance migratory birds use habitats that are scattered across continents and confront hazards throughout the annual cycle that may be population-limiting. Identifying where and when populations spend their time is fundamental to effective management. We tracked 34 adult whimbrels (Numenius phaeopus) from two breeding populations (Mackenzie Delta and Hudson Bay) with satellite transmitters to document the structure of their annual cycles. The two populations differed in their use of migratory pathways and their seasonal schedules. Mackenzie Delta whimbrels made long (22,800 km) loop migrations with different autumn and spring routes. Hudson Bay whimbrels made shorter (17,500 km) and more direct migrations along the same route during autumn and spring. The two populations overlap on the winter grounds and within one spring staging area. Mackenzie Delta whimbrels left the breeding ground, arrived on winter grounds, left winter grounds and arrived on spring staging areas earlier compared to whimbrels from Hudson Bay. For both populations, migration speed was significantly higher during spring compared to autumn migration. Faster migration was achieved by having fewer and shorter stopovers en route. We identified five migratory staging areas including four that were used during autumn and two that were used during spring. Whimbrels tracked for multiple years had high (98%) fidelity to staging areas. We documented dozens of locations where birds stopped for short periods along nearly all migration routes. The consistent use of very few staging areas suggests that these areas are integral to the annual cycle of both populations and have high conservation value
Dust in the wind: Crystalline silicates, corundum and periclase in PG 2112+059
We have determined the mineralogical composition of dust in the Broad
Absorption Line (BAL) quasar PG 2112+059 using mid-infrared spectroscopy
obtained with the Spitzer Space Telescope. From spectral fitting of the solid
state features, we find evidence for Mg-rich amorphous silicates with olivine
stoichiometry, as well as the first detection of corundum (Al_2O_3) and
periclase (MgO) in quasars. This mixed composition provides the first direct
evidence for a clumpy density structure of the grain forming region. The
silicates in total encompass 56.5% of the identified dust mass, while corundum
takes up 38 wt.%. Depending on the choice of continuum, a range of mass
fractions is observed for periclase ranging from 2.7% in the most conservative
case to 9% in a less constrained continuum. In addition, we identify a feature
at 11.2 micron as the crystalline silicate forsterite, with only a minor
contribution from polycyclic aromatic hydrocarbons. The 5% crystalline silicate
fraction requires high temperatures such as those found in the immediate quasar
environment in order to counteract rapid destruction from cosmic rays.Comment: 2 figure
Застосування визначеного інтегралу до розв’язування економічних задач
The aim of the present work was to study the influence of the stress on the electrode potential of the austenitic stainless steel301LN using Scanning Kelvin Probe (SKP). It was found that elastic deformation reversibly ennobles the potential whereas plasticdeformation decreases the potential in both tensile and compressive deformation mode and this decrease is retained even 24 h afterremoval of the load. To interpret the stress effects, different surface preparations were used and the composition and thickness ofthe passive film were determined by GDOES. Slip steps formed due to plastic deformation were observed using AFM. The effect ofplastic strain on the potential is explained by the formation of dislocations, which creates more a defective passive film.QC 20160516</p
Nanosatellite Launch Adapter System (NLAS)
The utility of small spacecraft based on the University cubesat standard is becoming evident as more and more agencies and organizations are launching or planning to include nanosatellites in their mission portfolios. Cubesats are typically launched as secondary spacecraft in enclosed, containerized deployers such as the CalPoly Poly Picosat Orbital Deployer (P-POD) system. The P-POD allows for ease of integration and significantly reduces the risk exposure to the primary spacecraft and mission. NASA/ARC and the Operationally Responsive Space office are collaborating to develop a Nanosatellite Launch Adapter System (NLAS), which can accommodate multiple cubesat or cubesat-derived spacecraft on a single launch vehicle. NLAS is composed of the adapter structure, P-POD or similar spacecraft dispensers, and a sequencer/deployer system. This paper describes the NLAS system and it s future capabilities, and also provides status on the system s development and potential first use in space
- …