708 research outputs found
Polarized Scattering in the Vicinty of Galaxies
Some bright cD galaxies in cluster cooling flows have Thomson optical depths
exceeding 0.01. A few percent of their luminosity is scattered and appears as
diffuse polarized emission. We calculate the scattering process for different
geometric combinations of luminosity sources and scattering media. We apply our
results to galaxies, with and without active nuclei, immersed in cooling flows.
We model observations of NGC 1275 and M87 (without active nuclei) in the
presence of sky and galactic background fluxes which hinder the measurement of
the scattered light at optical wavelengths. Current instruments are unable to
detect the scattered light from such objects. However, when a galaxy has an
active nucleus of roughly the same luminosity as the remainder of the galaxy in
V, both the total and polarized scattered intensity should observable on large
scales (5--30kpc), meaning intensity levels greater than 1% of the background
level. For typical AGN and galaxy spectral distributions, the scattering is
most easily detected at short (U) wavelengths. We point out that a number of
such cases will occur. We show that the radiation pattern from the central
nuclear region can be mapped using the scattering. We also show that the
scattered light can be used to measure inhomogeneities in the cooling flow.Comment: 29 pages of TEX, 14 figs, CRSR-1046, in ApJ Nov 20, 199
Effects of magnetic fields on radiatively overstable shock waves
We discuss high-resolution simulations of one-dimensional, plane-parallel
shock waves with mean speeds between 150 and 240 km/s propagating into gas with
Alfven velocities up to 40 km/s and outline the conditions under which these
radiative shocks experience an oscillatory instability in the cooling length,
shock velocity, and position of the shock front. We investigate two forms of
postshock cooling: a truncated single power law and a more realistic piecewise
power law. The degree of nonlinearity of the instability depends strongly on
the cooling power law and the Alfven Mach number: for power-law indices \alpha
< 0 typical magnetic field strengths may be insufficient either to stabilize
the fundamental oscillatory mode or to prevent the oscillations from reaching
nonlinear amplitudes.Comment: 11 text pages, LaTeX/AASTeX (aaspp4); 5 figures; accepted by Ap
Radiative instabilities in simulations of spherically symmetric supernova blast waves
High-resolution simulations of the cooling regions of spherically symmetric
supernova remnants demonstrate a strong radiative instability. This
instability, whose presence is dependent on the shock velocity, causes
large-amplitude fluctuations in the shock velocity. The fluctuations begin
almost immediately after the radiative phase begins (upon shell formation) if
the shock velocity lies in the unstable range; they last until the shock slows
to speeds less than approximately 130 km/s. We find that shock-velocity
fluctuations from the reverberations of waves within the remnant are small
compared to those due to the instability. Further, we find (in plane-parallel
simulations) that advected inhomogeneities from the external medium do not
interfere with the qualitative nature of the instability-driven fluctuations.
Large-amplitude inhomogeneities may alter the phases of shock-velocity
fluctuations, but do not substantially reduce their amplitudes.Comment: 18 pages text, LaTeX/AASTeX (aaspp4); 10 figures; accepted by Ap
The Cosmological Constant and Advanced Gravitational Wave Detectors
Interferometric gravitational wave detectors could measure the frequency
sweep of a binary inspiral [characterized by its chirp mass] to high accuracy.
The observed chirp mass is the intrinsic chirp mass of the binary source
multiplied by , where is the redshift of the source. Assuming a
non-zero cosmological constant, we compute the expected redshift distribution
of observed events for an advanced LIGO detector. We find that the redshift
distribution has a robust and sizable dependence on the cosmological constant;
the data from advanced LIGO detectors could provide an independent measurement
of the cosmological constant.Comment: 13 pages plus 5 figure, LaTeX. Revised and final version, to appear
in Phys. Rev.
Efficient Triangle Counting in Large Graphs via Degree-based Vertex Partitioning
The number of triangles is a computationally expensive graph statistic which
is frequently used in complex network analysis (e.g., transitivity ratio), in
various random graph models (e.g., exponential random graph model) and in
important real world applications such as spam detection, uncovering of the
hidden thematic structure of the Web and link recommendation. Counting
triangles in graphs with millions and billions of edges requires algorithms
which run fast, use small amount of space, provide accurate estimates of the
number of triangles and preferably are parallelizable.
In this paper we present an efficient triangle counting algorithm which can
be adapted to the semistreaming model. The key idea of our algorithm is to
combine the sampling algorithm of Tsourakakis et al. and the partitioning of
the set of vertices into a high degree and a low degree subset respectively as
in the Alon, Yuster and Zwick work treating each set appropriately. We obtain a
running time
and an approximation (multiplicative error), where is the number
of vertices, the number of edges and the maximum number of
triangles an edge is contained.
Furthermore, we show how this algorithm can be adapted to the semistreaming
model with space usage and a constant number of passes (three) over the graph
stream. We apply our methods in various networks with several millions of edges
and we obtain excellent results. Finally, we propose a random projection based
method for triangle counting and provide a sufficient condition to obtain an
estimate with low variance.Comment: 1) 12 pages 2) To appear in the 7th Workshop on Algorithms and Models
for the Web Graph (WAW 2010
- …