2 research outputs found

    Statistics of Largest Loops in a Random Walk

    Full text link
    We report further findings on the size distribution of the largest neutral segments in a sequence of N randomly charged monomers [D. Ertas and Y. Kantor, Phys. Rev. E53, 846 (1996); cond-mat/9507005]. Upon mapping to one--dimensional random walks (RWs), this corresponds to finding the probability distribution for the size L of the largest segment that returns to its starting position in an N--step RW. We primarily focus on the large N, \ell = L/N << 1 limit, which exhibits an essential singularity. We establish analytical upper and lower bounds on the probability distribution, and numerically probe the distribution down to \ell \approx 0.04 (corresponding to probabilities as low as 10^{-15}) using a recursive Monte Carlo algorithm. We also investigate the possibility of singularities at \ell=1/k for integer k.Comment: 5 pages and 4 eps figures, requires RevTeX, epsf and multicol. Postscript file also available at http://cmtw.harvard.edu/~deniz/publications.htm

    Pinning/depinning of crack fronts in heterogeneous materials

    Full text link
    The fatigue fracture surfaces of a metallic alloy, and the stress corrosion fracture surfaces of glass are investigated as a function of crack velocity. It is shown that in both cases, there are two fracture regimes, which have a well defined self-affine signature. At high enough length scales, the universal roughness index 0.78 is recovered. At smaller length scales, the roughness exponent is close to 0.50. The crossover length ξc\xi_c separating these two regimes strongly depends on the material, and exhibits a power-law decrease with the measured crack velocity ξcvϕ\xi_c \propto v^{-\phi}, with ϕ1\phi \simeq 1. The exponents ν\nu and β\beta characterising the dependence of ξc\xi_c and vv upon the pulling force are shown to be close to ν2\nu \simeq 2 and β2\beta \simeq 2.Comment: 4 pages, latex, and 4 encapsulated postscript figure
    corecore