3,045 research outputs found

    Conversion of acetate to lipids and co2 by liver of rats exposed to acceleration stress

    Get PDF
    Acetate conversion to lipids and carbon dioxide by exposure of rat liver to acceleration stres

    Computer system for monitoring radiorepirometry data

    Get PDF
    System monitors expired breath patterns simultaneously from four small animals after they have been injected with carbon-14 substrates. It has revealed significant quantitative differences in oxidation patterns of glucose following such mild treatments of rats as a change in diet or environment

    Plane waves in quantum gravity: breakdown of the classical spacetime

    Get PDF
    Starting with the Hamiltonian formulation for spacetimes with two commuting spacelike Killing vectors, we construct a midisuperspace model for linearly polarized plane waves in vacuum gravity. This model has no constraints and its degrees of freedom can be interpreted as an infinite and continuous set of annihilation and creation like variables. We also consider a simplified version of the model, in which the number of modes is restricted to a discrete set. In both cases, the quantization is achieved by introducing a Fock representation. We find regularized operators to represent the metric and discuss whether the coherent states of the quantum theory are peaked around classical spacetimes. It is shown that, although the expectation value of the metric on Killing orbits coincides with a classical solution, its relative fluctuations become significant when one approaches a region where null geodesics are focused. In that region, the spacetimes described by coherent states fail to admit an approximate classical description. This result applies as well to the vacuum of the theory.Comment: 11 pages, no figures, version accepted for publication in Phys. Rev.

    Quantization of pure gravitational plane waves

    Get PDF
    Pure gravitational plane waves are considered as a special case of spacetimes with two commuting spacelike Killing vector fields. Starting with a midisuperspace that describes this kind of spacetimes, we introduce gauge-fixing and symmetry conditions that remove all non-physical degrees of freedom and ensure that the classical solutions are plane waves. In this way, we arrive at a reduced model with no constraints and whose only degrees of freedom are given by two fields. In a suitable coordinate system, the reduced Hamiltonian that generates the time evolution of this model turns out to vanish, so that all relevant information is contained in the symplectic structure. We calculate this symplectic structure and particularize our discussion to the case of linearly polarized plane waves. The reduced phase space can then be described by an infinite set of annihilation and creation like variables. We finally quantize the linearly polarized model by introducing a Fock representation for these variables.Comment: 11 pages, Revtex, no figure

    Energy and directional signatures for plane quantized gravity waves

    Get PDF
    Solutions are constructed to the quantum constraints for planar gravity (fields dependent on z and t only) in the Ashtekar complex connection formalism. A number of operators are constructed and applied to the solutions. These include the familiar ADM energy and area operators, as well as new operators sensitive to directionality (z+ct vs. z-ct dependence). The directionality operators are quantum analogs of the classical constraints proposed for unidirectional plane waves by Bondi, Pirani, and Robinson (BPR). It is argued that the quantum BPR constraints will predict unidirectionality reliably only for solutions which are semiclassical in a certain sense. The ADM energy and area operators are likely to have imaginary eigenvalues, unless one either shifts to a real connection, or allows the connection to occur other than in a holonomy. In classical theory, the area can evolve to zero. A quantum mechanical mechanism is proposed which would prevent this collapse.Comment: 54 pages; LaTe

    Robot and robot system

    Get PDF
    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body

    Test particles behavior in the framework of a lagrangian geometric theory with propagating torsion

    Full text link
    Working in the lagrangian framework, we develop a geometric theory in vacuum with propagating torsion; the antisymmetric and trace parts of the torsion tensor, considered as derived from local potential fields, are taken and, using the minimal action principle, their field equations are calculated. Actually these will show themselves to be just equations for propagating waves giving torsion a behavior similar to that of metric which, as known, propagates through gravitational waves. Then we establish a principle of minimal substitution to derive test particles equation of motion, obtaining, as result, that they move along autoparallels. We then calculate the analogous of the geodesic deviation for these trajectories and analyze their behavior in the nonrelativistic limit, showing that the torsion trace potential ϕ\phi has a phenomenology which is indistinguishable from that of the gravitational newtonian field; in this way we also give a reason for why there have never been evidence for it.Comment: 12 pages, no figures, to appear on Int. Journ. Mod. Phys.

    Dissecting the links between reward and loss, decision-making, and self-reported affect using a computational approach

    Get PDF
    Links between affective states and risk-taking are often characterised using summary statistics from serial decision-making tasks. However, our understanding of these links, and the utility of decision-making as a marker of affect, needs to accommodate the fact that ongoing (e.g., within-task) experience of rewarding and punishing decision outcomes may alter future decisions and affective states. To date, the interplay between affect, ongoing reward and punisher experience, and decision-making has received little detailed investigation. Here, we examined the relationships between reward and loss experience, affect, and decision-making in humans using a novel judgement bias task analysed with a novel computational model. We demonstrated the influence of within-task favourability on decision-making, with more risk-averse/'pessimistic' decisions following more positive previous outcomes and a greater current average earning rate. Additionally, individuals reporting more negative affect tended to exhibit greater risk-seeking decision-making, and, based on our model, estimated time more poorly. We also found that individuals reported more positive affective valence during periods of the task when prediction errors and offered decision outcomes were more positive. Our results thus provide new evidence that (short-term) within-task rewarding and punishing experiences determine both future decision-making and subjectively experienced affective states

    Engaged followership and toxic science:Exploring the effect of prototypicality on willingness to follow harmful experimental instructions

    Get PDF
    Drawing on the ‘engaged followership’ reinterpretation of Milgram's work on obedience, four studies (three pre-registered) examine the extent to which people's willingness to follow an experimenter's instructions is dependent on the perceived prototypicality of the science they are supposedly advancing. In Studies 1, 2 and 3, participants took part in a study that was described as advancing either ‘hard’ (prototypical) science (i.e., neuroscience) or ‘soft’ (non-prototypical) science (i.e., social science) before completing an online analogue of Milgram's ‘Obedience to Authority’ paradigm. In Studies 1 and 2, participants in the neuroscience condition completed more trials than those in the social science condition. This effect was not replicated in Study 3, possibly because the timing of data collection (late 2020) coincided with an emphasis on social science's importance in controlling COVID-19. Results of a final cross-sectional study (Study 4) indicated that participants who perceived the study to be more prototypical of science found it more worthwhile, reported making a wider contribution by taking part, reported less dislike for the task, more happiness at having taken part, and more trust in the researchers, all of which indirectly predicted greater followership. Implications for the theoretical understanding of obedience to toxic instructions are discussed
    • 

    corecore