448,868 research outputs found

    Separating Solution of a Quadratic Recurrent Equation

    Full text link
    In this paper we consider the recurrent equation Ξ›p+1=1pβˆ‘q=1pf(qp+1)Ξ›qΞ›p+1βˆ’q\Lambda_{p+1}=\frac1p\sum_{q=1}^pf\bigg(\frac{q}{p+1}\bigg)\Lambda_{q}\Lambda_{p+1-q} for pβ‰₯1p\ge 1 with f∈C[0,1]f\in C[0,1] and Ξ›1=y>0\Lambda_1=y>0 given. We give conditions on ff that guarantee the existence of y(0)y^{(0)} such that the sequence Ξ›p\Lambda_p with Ξ›1=y(0)\Lambda_1=y^{(0)} tends to a finite positive limit as pβ†’βˆžp\to \infty.Comment: 13 pages, 6 figures, submitted to J. Stat. Phy

    On a nonlinear recurrent relation

    Full text link
    We study the limiting behavior for the solutions of a nonlinear recurrent relation which arises from the study of Navier-Stokes equations. Some stability theorems are also shown concerning a related class of linear recurrent relations.Comment: to appear in Journal of Statistical Physic

    Freshness-Aware Thompson Sampling

    Full text link
    To follow the dynamicity of the user's content, researchers have recently started to model interactions between users and the Context-Aware Recommender Systems (CARS) as a bandit problem where the system needs to deal with exploration and exploitation dilemma. In this sense, we propose to study the freshness of the user's content in CARS through the bandit problem. We introduce in this paper an algorithm named Freshness-Aware Thompson Sampling (FA-TS) that manages the recommendation of fresh document according to the user's risk of the situation. The intensive evaluation and the detailed analysis of the experimental results reveals several important discoveries in the exploration/exploitation (exr/exp) behaviour.Comment: 21st International Conference on Neural Information Processing. arXiv admin note: text overlap with arXiv:1409.772

    Making Clean Energy with a Kerr Black Hole: a Tokamak Model for Gamma-Ray Bursts

    Full text link
    In this paper we present a model for making clean energy with a Kerr black hole. Consider a Kerr black hole with a dense plasma torus spinning around it. A toroidal electric current flows on the surface of the torus, which generates a poloidal magnetic field outside the torus. On the surface of the tours the magnetic field is parallel to the surface. The closed magnetic field lines winding around the torus compress and confine the plasma in the torus, as in the case of tokamaks. Though it is unclear if such a model is stable, we look into the consequences if the model is stable. If the magnetic field is strong enough, the baryonic contamination from the plasma in the torus is greatly suppressed by the magnetic confinement and a clean magnetosphere of electron-positron pairs is built up around the black hole. Since there are no open magnetic field lines threading the torus and no accretion, the power of the torus is zero. If some magnetic field lines threading the black hole are open and connect with loads, clean energy can be extracted from the Kerr black hole by the Blandford-Znajek mechanism. The model may be relevant to gamma-ray bursts. The energy in the Poynting flux produced by the Blandford-Znajek mechanism is converted into the kinetic energy of the electron-positron pairs in the magnetosphere around the black hole, which generates two oppositely directed jets of electron-positron pairs with super-high bulk Lorentz factors. The jets collide and interact with the interstellar medium, which may produce gamma-ray bursts and the afterglows.Comment: 14 pages, 1 figure, accepted by Ap

    Extracting Energy from a Black Hole through Its Disk

    Full text link
    When some magnetic field lines connect a Kerr black hole with a disk rotating around it, energy and angular momentum are transferred between them. If the black hole rotates faster than the disk, ca/GMH>0.36ca/GM_H>0.36 for a thin Keplerian disk, then energy and angular momentum are extracted from the black hole and transferred to the disk (MHM_H is the mass and aMHa M_H is the angular momentum of the black hole). This way the energy originating in the black hole may be radiated away by the disk. The total amount of energy that can be extracted from the black hole spun down from ca/GMH=0.998ca/GM_H = 0.998 to ca/GMH=0.36ca/GM_H = 0.36 by a thin Keplerian disk is β‰ˆ0.15MHc2\approx 0.15 M_Hc^2. This is larger than β‰ˆ0.09MHc2\approx 0.09 M_Hc^2 which can be extracted by the Blandford-Znajek mechanism.Comment: 8 pages, 2 figure
    • …
    corecore