524 research outputs found

    Viabilità minore motore di sviluppo

    Get PDF
    Nel mondo, molte strade extraurbane (viabilità minore o locale) si caratterizzano per il ridotto transito giornaliero dei veicoli, transito che assume un valore variabile in relazione ai diversi contesti. Però è soltanto questa rete secondaria che assicura i collegamenti indispensabili per la popolazione insediata lontano dai grandi centri urbani, popolazione che, pur potendo provvedere al proprio sostentamento, attingendo alle sole risorse presenti di fatto dipende, per tutte le funzioni di ordine superiore (commercio, educazione, sanità, servizi) da questa rete stradale. Strade quindi che sono indispensabili per chi risiede lontano dai centri urbani. Ma le risorse assegnate per la manutenzione sono molto scarse. Quando si tratta di pianificare e di investire sulla rete locale, si fa ricorso ai modelli tradizionali di investimento (ivi inclusa l’analisi costi-benefici e la stima dei costi sociali connessi), modelli utilizzati per le reti di traffico di una certa rilevanza ma del tutto inappropriati se applicati a contesti locali

    Viabilità minore motore di sviluppo

    Get PDF
    È importante che un Paese come l???Italia, che vanta una esperienza di viabilità vecchia di millenni e che oggi ha una rete stradale di altissimo livello, dedichi questa capacità a portare collaborazione ad altri Paesi che necessitano di creare un sistema che sia volano per una loro crescita economica e sociale. L???Italia non si tirerà indietro in questa missione e si vuole proporre come attore nel progetto di organizzazione di una rete di collaborazione e cooperazione intercontinentale stabilendo un asse osmotico tra il vecchio continente e il più antico continente africano con le sue diverse realtà culturali, storiche ed economiche che sono una risorsa indispensabile ed imprescindibile per tutto il mondo

    Assessing a Microwave Imaging System for Brain Stroke Monitoring via High Fidelity Numerical Modelling

    Get PDF
    This work presents the outcomes of a numerical analysis based on a 3-D high fidelity model of a realistic microwave imaging system for the clinical follow-up of brain stroke. The analysis is meant as a preliminary step towards the full experimental characterization of the system, with the aim of assessing the achievable results and highlight possible critical points. The system consists of an array of twenty-four printed monopole antennas, placed conformal to the upper part of the head; each monopole is immersed into a semi-solid dielectric brick with custom permittivity, acting as coupling medium. The whole system, including the antennas and their feeding mechanism, has been numerically modeled via a custom full-wave software based on the finite element method. The numerical model generates reliable electromagnetic operators and accurate antenna scattering parameters, which provide the input data for the implemented imaging algorithm. In particular, the numerical analysis assesses the capability of the device of reliably monitoring the evolution of hemorrhages and ischemias, considering the progression from a healthy statet o an early-stage stroke

    APOE epsilon 4 carriers may undergo synaptic damage conferring risk of Alzheimer's disease

    Get PDF
    INTRODUCTION: Pathogenesis of Alzheimer's disease (AD) in apolipoprotein E ε4 (APOE ε4) carriers remains unclear. We hypothesize that APOE isoforms have differential effects on synaptic function. METHODS: We compared levels of CSF neurogranin (Ng) between APOE ε4 carriers and noncarriers in 399 subjects with normal cognition, mild cognitive impairment (MCI), and AD. We examined associations between Ng levels and age, education, gender, CSF-Aβ42, and tau protein. RESULTS: Neurogranin levels were significantly higher in APOE ε4 carriers compared to APOE ε4 noncarriers with MCI. Levels of Ng between the APOE ε4 carriers and APOE ε4 noncarriers with AD did not differ. Ng levels were correlated with MMSE and levels of tau and Aβ42. DISCUSSION: Significantly higher CSF Ng levels in APOE ε4 carriers with MCI may reflect synaptic injury underlying early cognitive impairment. Neurogranin may be an early biomarker of AD and important for disease diagnosis and timing of intervention in APOE ε4 carriers

    Cancellation of vorticity in steady-state non-isentropic flows of complex fluids

    Full text link
    In steady-state non-isentropic flows of perfect fluids there is always thermodynamic generation of vorticity when the difference between the product of the temperature with the gradient of the entropy and the gradient of total enthalpy is different from zero. We note that this property does not hold in general for complex fluids for which the prominent influence of the material substructure on the gross motion may cancel the thermodynamic vorticity. We indicate the explicit condition for this cancellation (topological transition from vortex sheet to shear flow) for general complex fluids described by coarse-grained order parameters and extended forms of Ginzburg-Landau energies. As a prominent sample case we treat first Korteweg's fluid, used commonly as a model of capillary motion or phase transitions characterized by diffused interfaces. Then we discuss general complex fluids. We show also that, when the entropy and the total enthalpy are constant throughout the flow, vorticity may be generated by the inhomogeneous character of the distribution of material substructures, and indicate the explicit condition for such a generation. We discuss also some aspects of unsteady motion and show that in two-dimensional flows of incompressible perfect complex fluids the vorticity is in general not conserved, due to a mechanism of transfer of energy between different levels.Comment: 12 page

    Wearable Microwave Imaging System for Brain Stroke Imaging

    Get PDF
    This paper presents the experimental validation of the detection capabilities of a low complexity wearable system designed for the imaging-based detection of brain stroke. The system approaches the electromagnetic inverse problem via a 3-D imaging algorithm based on the Born approximation and the Truncated Singular Value Decomposition (TSVD). For testing, flexible antennas with custom-made coupling-medium are prototyped and assessed in mimicked hemorrhagic and ischemic stroke conditions. The experiment emulates the clinical scenario using a single-tissue anthropomorphic head phantom and strokes with both 20 cm 3 and 60 cm 3 ellipsoid targets. The imaging kernel is computed via full-wave simulation of a virtual twin model. The results demonstrate the capabilities for detecting and estimating the stroke-affected area

    A Portable Microwave Scanner for Brain Stroke Monitoring: Design, Implementation and Experimental Validation

    Get PDF
    This paper presents the design, the realization, and the experimental assessment of a novel portable microwave scanner prototype for brain stroke monitoring. The device employs a 22-antenna-array, placed conformal to the upper head part, composed of compact, flexible, and custom-made antennas working at around 1 GHz. The validation includes the monitoring of an experimentally emulated evolving hemorrhagic stroke. The progression of the medical condition is emulated via a non-static phantom (custom-shape balloon), derived from medical images, and a single-cavity 3-D anthropomorphic head phantom. The phantoms are filled with liquids mimicking the dielectric properties of the hemorrhage and the average brain tissues, respectively. The imaging-based follow-up is approached using a differential scheme that receives the scattering matrices, taken at two different instants, and exploits the distorted Born approximation to form the image in real-time. The kernel of the imaging algorithm is computed through accurate numerical models. The results verify the capabilities of the system to assess the continuous evolution of the stroke

    Microwave imaging device prototype for brain stroke 3D monitoring

    Get PDF
    This paper summarizes the development and the experimental testing of a scanning device, in the microwave range, to monitor brain stroke. The device comprehends 4 main sections: a sensors helmet, a switching matrix, a data acquisition part, and a control/processing core. The sensors in the helmet are 22 custom-made flexible antennas working around 1 GHz, placed conformally to the upper head part. A first validation of the system consists in the detection of a target in the head region. Experimental testing is performed on a single-cavity head phantom, while the target is a balloon mimicking the stroke. The shape of the balloon and phantom are extracted from medical images, and tissues properties are emulated with liquids that resemble their dielectric properties. A differential measurement approach senses the field on the antennas in two different situations, and from their difference computes a 3-D image through a singular value decomposition of the discretized scattering operator obtained from an accurate numerical model. The results verify the capabilities of the system on detecting and monitoring stroke evolution
    corecore