1,743 research outputs found
Leukocyte telomere shortening in Huntington's disease
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG repeat. Though symptom onset commonly occurs at midlife and inversely correlates with the CAG repeat expansion, age at clinical onset and progression rate are variable. In the present study we investigated the relationship between leukocyte telomere length (LTL) and HD development. LTL was measured by real-time PCR in manifest HD patients (HD, n = 62), pre-manifest HD patients (pre-HD, n = 38), and age-matched controls (n = 76). Significant LTL differences were observed between the three groups (p < .0001), with LTL values in the order: HD < pre-HD < controls. The relationship between LTL and age was different in the three groups. An inverse relationship between mean LTL and CAG repeat number was found in the pre-HD (p = .03). The overall data seem to indicate that after age 30 years, LT begins to shorten markedly in pre-HD patients according to CAG number and increasing age, up to the values observed in HD. This very suggestive picture allowed us to hypothesize that in pre-manifest HD, LTL could be a measure of time to clinical HD onset. The possible use of LTL as a reliable biomarker to track HD development and progression was evaluated and discussed
Bcl-2 resistant mitochondrial toxicity mediated by the isoquinoline carboxamide PK11195 involves de novo generation of reactive oxygen species
Resistance to apoptosis is a major obstacle preventing effective therapy for malignancy. Mitochondria localized anti-death proteins of the Bcl-2 family play a central role in inhibiting apoptosis and therefore present valid targets for novel therapy. The peripheral benzodiazepine receptor (PBR) shares a close physical association with the permeability transition pore complex (PTPC), a pivotal regulator of cell death located at mitochondrial contact sites. In this study we investigated the cytotoxicity of the PBR ligand, PK11195, in the micromolar concentration range. PK11195 induced antioxidant inhibitable collapse of the inner mitochondrial membrane potential (ΔΨm) and mitochondrial swelling in HL60 human leukaemia cells, but not in SUDHL4 lymphoma cells (which exhibited a higher level of reduced glutathione and relative tolerance to chemotherapy or pro-oxidant induced ΔΨm dissipation). PK11195 induced the production of hydrogen peroxide that was not inhibited by Bcl-2 transfection, nor depletion of mitochondrial DNA. ROS production was however blocked by protonophore, implicating a requirement for ΔΨm. Our findings suggest that PK11195-induced cytotoxicity relies upon Bcl-2 resistant generation of oxidative stress; a process only observed at concentrations several orders of magnitude higher that required to saturate its receptor. © 2001 Cancer Research Campaign www.bjcancer.co
A preliminary report for the design of mos (micro-olive-spreadsheet), a user-friendly spreadsheet for the evaluation of the microbiological quality of spanish-style bella di cerignola olives from apulia (Southern Italy)
A user friendly spreadsheet (Excel interface), designated MoS (Micro-Olive-Spreadsheet), is proposed in this paper as a tool to point out spoiling phenomena in Bella di Cerignola olive brines. The spreadsheet was designed as a protected Excel worksheet, where users input values for the microbiological criteria and pH of brines, and the output is a visual code, much like a traffic light: three red cells indicate a spoiling event, while two red cells indicate the possibility of a spoiling event. The input values are: (a) Total Aerobic Count (TAC); (b) Lactic Acid Bacteria (LAB); (c) yeasts; (d) staphylococci; (e) pH. TAC, LAB, yeasts, and pH are the input values for the first section (quality), while staphylococci count is the input for the second section (technological history). The worksheet can bemodified by adding other indices or by setting different breakpoints; however, it is a simple tool for an effective application of hazard analysis and predictive microbiology in table olive production
Alginate- and Gelatin-Coated Apple Pieces as Carriers for Bifidobacterium animalis subsp. lactis DSM 10140
Fruit and vegetables are considered good natural supports for microorganisms; however, probiotics could cause negative changes on some organoleptic and sensory traits. Thus, the main topic of this paper was the design of coated apple chips as carriers for probiotics with a high level of sensory traits. The research was divided into two steps. First, four functional strains (Limosilactobacillus reuteri DSM 20016, Bifidobacterium animalis subsp. lactis DSM 10140, and Lactiplantibacillus plantarum c16 and c19) were immobilized on apple pieces through dipping of fruit chips in probiotic suspensions for different contact times (from 15 to 30 min) and stored at 4°C for 12 days. Periodically, the viable count was assessed. As a result of this step, a contact time of 15 min was chosen because it assured an optimal deposition of microorganisms. In the second step, apple pieces inoculated with B. animalis subsp. lactis DSM 10140 were coated with alginate and gelatin and stored at 4 and 8°C for 10 days; pH, microbiological counts, color (browning index), and sensory scores were evaluated. Bifidobacterium animalis DSM 10140 exerted a negative effect on apple chips and cause a significant browning; however, the use of coating counteracted this phenomenon. In fact, coated chips showed higher sensory scores and lower browning index. In addition, gelatin showed better performances in terms of probiotic viability, because at 8°C, a significant viability loss of B. animalis DSM 10140 (1.2 log cfu/g) was found on alginate-coated chips. Gelatin-coated apple pieces with B. animalis subsp. lactis DSM 10140 could be an attractive functional food for a wide audience, although further investigations are required on in vivo effects of this product after consumption
Ultrasound-attenuated microorganisms inoculated in vegetable beverages: Effect of strains, temperature, ultrasound and storage conditions on the performances of the treatment
Four microorganisms (Lactobacillus acidophilus LA5, Bifidobacterium animalis subsp. lactis DSM 10140 and Lactiplantibacillus plantarum c16 and c19) were attenuated through ultrasound (US) treatments (40% of power for 2, 4 and 6 min; and 60% for 2 min; pulses were set at 2 s) inoculated in rice–oats–almond–soy-based beverages and stored at 4◦C for eight days. All strains were able to survive throughout the storage independently by the food matrix. Concerning the effect on acidification, the results were analyzed through multifactorial analysis of variance (MANOVA) and the key-findings of this were: (i) The treatment with 40% of power for 6 min was the most efficient at delaying acidification; (ii) Lb. acidophilus LA5 showed the best capacity to delay acidification; (iii) in the soy-based beverage a lower acidification was found. In a second step, L. plantarum c16 and c19 were attenuated, inoculated in rice beverage, stored under a thermal abuse (for 4 and 24 h) and then at 4, 15 and 20◦C. The results showed that only when US were combined with refrigeration temperatures were they efficient at delaying acidification. Thus, a perspective for attenuation could be the optimization of the treatment to design an effective way to counteract acidification also under a thermal abuse
Ultrasonic modulation of the technological and functional properties of yeast strains
This research was aimed at studying the effects of low intensity ultrasound (US) on some technological and functional properties of eight strains of Saccharomyces cerevisiae; namely, growth patterns (growth at 2–5% of NaCl or at 37 °C), autoaggregation and tolerance to simulated gastrointestinal conditions were evaluated. A US treatment was applied at 20% of net power (130 W) by a modulating duration (2–10 min) and pulses (2–10 s). The viable count (4.81–6.33 log CFU/mL) was not affected by US, while in terms of technological traits the effect was strain specific; in particular, for some strains a positive effect of US was found with a significant growth enhancement (growth index >120%). The treatment was also able to increase the autoaggregation of some strains, thus suggesting that US could represent a promising way to treat and select nonconventional functional yeasts for food applications
Increase of acidification of synthetic brines by ultrasound-treated Lactiplantibacillus plantarum strains isolated from olives
This paper focused on the evaluation of Ultrasound effect on the growth patterns (3–6% of salt and 45 °C), acidification (pH-decrease), interactions with microorganisms, and membrane permeability of nine strains of Lactiplantibacillus plantarum. Ultrasound treatment was applied at 20% of net power by modulating duration (2–10 min) and pulses (2–10 s). Viable count (7.15–8.16 log CFU/mL) was never affected by Ultrasound, while the treatment increased the extent of pH decrease of at least three strains (109, 162 and c19). L. plantarum c19 was the best performer, as a low intensity treatment was able to increase its acidification, without affecting its growth. The effects could be attributed to an increased permeability of the cellular membrane, as suggested by the increase of released intracellular components. Other factors should be further assessed (e.g. possible changes in the metabolism) and the performances of Ultrasound-treated strains in real brines
Fish loss/waste and low-value fish challenges: State of art, advances, and perspectives
The sustainability of fishery is a global challenge due to overfishing and reduced stocks all over the world; one of the leading factors of this threat is fish loss/waste. As a contribution to the global efforts towards a sustainable world, this review addresses the topic from different sides and proposes an overview of biorefinery approaches by discussing bioactive compounds that could be produced from fish loss (nitrogen compounds, lipids, minerals and pigments, and fish-based compounds such as chitosan). The second part of this review reports on the possibility of using loss or unwanted fish to design products for human consumption or for animal feeding, with a focus on economic criteria, consumers’ segmentation, and some examples of products. The final focus is on Food and Agriculture Organization FAO guidelines as a roadmap for the future with respect to solving this threat by addressing the problem from different sides (technology, skills, market, policy, social and gender equity, and infrastructures)
Yield and quality characteristics of brassica microgreens as affected by the NH4:NO3 molar ratio and strength of the nutrient solution
Microgreens are gaining more and more interest, but little information is available on the effects of the chemical composition of the nutrient solution on the microgreen yield. In this study, three Brassica genotypes (B. oleracea var. italica, B. oleracea var. botrytis, and Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort) were fertigated with three modified strength Hoagland nutrient solutions (1/2, 1/4, and 1/8 strength) or with three modified half-strength Hoagland nutrient solutions with three different NH4:NO3 molar ratios (5:95, 15:85, and 25:75). Microgreen yields and content of inorganic ions, dietary fiber, proteins, alpha;-tocopherol, and β-carotene were evaluated. Micro cauliflower showed the highest yield, as well as a higher content of mineral elements and alpha;-tocopherol (10.4 mg 100 g-1 fresh weight (FW)) than other genotypes. The use of nutrient solution at half strength gave both a high yield (0.23 g cm-2) and a desirable seedling height. By changing the NH4:NO3 molar ratio in the nutrient solution, no differences were found on yield and growing parameters, although the highest β-carotene content (6.3 mg 100 g-1 FW) was found by using a NH4:NO3 molar ratio of 25:75. The lowest nitrate content (on average 6.8 g 100 g-1 dry weight) was found in micro broccoli and micro broccoli raab by using a nutrient solution with NH4:NO3 molar ratios of 25:75 and 5:95, respectively. Micro cauliflower fertigated with a NH4:NO3 molar ratio of 25:75 showed the highest dry matter (9.8 g 100 g-1 FW) and protein content (4.2 g 100 g-1 FW)
Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics
This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean
- …