2,883 research outputs found

    Stabilization of A-type layered antiferromagnetic phase in LaMnO_3 by cooperative Jahn-Teller deformations

    Full text link
    It is shown that the layered antiferromagnetic order in stoechiometric LaMnO_3 cannot be understood purely from electronic interactions. On the contrary, it mainly results from strong cooperative Jahn-Teller deformations. Those involve a compression of the Mn-O octahedron along the c-axis (mode Q_3 < 0), while alternate Jahn-Teller deformations occur in the ab-plane (mode Q_2). These deformations stabilize a certain type of orbital ordering. The resulting superexchange couplings are calculated by exact diagonalization, taking into account both e_g and t_{2g} orbitals. The main result is that antiferromagnetic (ferromagnetic) coupling along the c-direction (ab-planes) can be understood only if the Jahn-Teller energy is much larger than the superexchange couplings, which is consistent with experiments. This mechanism contrasts with that based on weak Jahn-Teller coupling which instead predicts elongation along the c-axis (Q_3 > 0). The crucial role of the deformation anisotropy Q_2/Q_3 is also emphasized.Comment: 8 pages, 6 figure

    Performance of twin two-dimensional wedge nozzles including thrust vectoring and reversing effects at speeds up to Mach 2.20

    Get PDF
    Transonic tunnel and supersonic pressure tunnel tests were reformed to determine the performance characteristics of twin nonaxisymmetric or two-dimensional nozzles with fixed shrouds and variable-geometry wedges. The effects of thrust vectoring, reversing, and installation of various tails were also studied. The investigation was conducted statically and at flight speeds up to a Mach number of 2.20. The total pressure ratio of the simulated jet exhaust was varied up to approximately 26 depending on Mach number. The Reynolds number per meter varied up to 13.20 x 1 million. An analytical study was made to determine the effect on calculated wave drag by varying the mathematical model used to simulate nozzle jet-exhaust plume

    Effect of thrust vectoring and wing maneuver devices on transonic aeropropulsive characteristics of a supersonic fighter

    Get PDF
    The aeropropulsive characteristics of an advanced fighter designed for supersonic cruise were determined in the Langley 16-Foot Transonic Tunnel. The objectives of this investigation were to evaluate the interactive effects of thrust vectoring and wing maneuver devices on lift and drag and to determine trim characteristics. The wing maneuver devices consisted of a drooped leading edge and a trailing-edge flap. Thrust vectoring was accomplished with two dimensional (nonaxisymmetric) convergent-divergent nozzles located below the wing in two single-engine podded nacelles. A canard was utilized for trim. Thrust vector angles of 0 deg, 15 deg, and 30 deg were tested in combination with a drooped wing leading edge and with wing trailing-edge flap deflections up to 30 deg. This investigation was conducted at Mach numbers from 0.60 to 1.20, at angles of attack from 0 deg to 20 deg, and at nozzle pressure ratios from about 1 (jet off) to 10. Reynolds number based on mean aerodynamic chord varied from 9.24 x 10 to the 6th to 10.56 x 10 to the 6th

    Aerodynamic Characteristics of a Supersonic Fighter Aircraft Model at Mach 0.40 to 2.47

    Get PDF
    The aerodynamic characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Transonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective of this investigation was to establish an aerodynamic data base for the configuration with flow-through nacelles and representative inlets. The use of a canard for trim and the effects of fairing over the inlets were assessed. Comparisons between experimental and theoretical results were also made. The theoretical results were determined by using a potential vortex lift code for subsonic speeds and a linear aerodynamic code for supersonic speeds. This investigation was conducted at Mach numbers from 0.40 to 2.47, at angles of attack from 0 deg to about 20 deg, and at inlet capture ratios of about 0.5 to 1.4

    Rotationally-invariant slave-bosons for Strongly Correlated Superconductors

    Full text link
    We extend the rotationally invariant formulation of the slave-boson method to superconducting states. This generalization, building on the recent work by Lechermann et al. [Phys. Rev. B {\bf 76}, 155102 (2007)], allows to study superconductivity in strongly correlated systems. We apply the formalism to a specific case of strongly correlated superconductivity, as that found in a multi-orbital Hubbard model for alkali-doped fullerides, where the superconducting pairing has phonic origin, yet it has been shown to be favored by strong correlation owing to the symmetry of the interaction. The method allows to treat on the same footing the strong correlation effects and the interorbital interactions driving superconductivity, and to capture the physics of strongly correlated superconductivity, in which the proximity to a Mott transition favors the superconducting phenomenon.Comment: 18 pages, 7 figure

    Visual materials as tools in the teaching of geography

    Full text link
    Thesis (Ed.M.)--Boston University, 1947. This item was digitized by the Internet Archive

    Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules

    Full text link
    Limited bonding valence, usually accompanied by well-defined directional interactions and selective bonding mechanisms, is nowadays considered among the key ingredients to create complex structures with tailored properties: even though isotropically interacting units already guarantee access to a vast range of functional materials, anisotropic interactions can provide extra instructions to steer the assembly of specific architectures. The anisotropy of effective interactions gives rise to a wealth of self-assembled structures both in the realm of suitably synthesized nano- and micro-sized building blocks and in nature, where the isotropy of interactions is often a zero-th order description of the complicated reality. In this review, we span a vast range of systems characterized by limited bonding valence, from patchy colloids of new generation to polymer-based functionalized nanoparticles, DNA-based systems and proteins, and describe how the interaction patterns of the single building blocks can be designed to tailor the properties of the target final structures

    Exciton Mott transition revisited

    Get PDF
    The dissociation of excitons into a liquid of holes and electrons in photoexcited semiconductors, despite being one of the first recognized examples of a Mott transition, still defies a complete understanding, especially regarding the nature of the transition, which is found to be continuous in some cases and discontinuous in others. Here we consider an idealized model of photoexcited semiconductors that can be mapped onto a spin-polarized half-filled Hubbard model, whose phase diagram reproduces most of the phenomenology of those systems and uncovers the key role of the exciton binding energy in determining the nature of the exciton Mott transition. We find indeed that the transition changes from discontinuous to continuous as the binding energy increases. Moreover, we uncover a rather anomalous electron-hole liquid phase next to the transition, which still sustains excitonic excitations despite being a degenerate Fermi liquid of heavy mass quasiparticles

    Resonating bipolarons

    Full text link
    Electrons coupled to local lattice deformations end up in selftrapped localized molecular states involving their binding into bipolarons when the coupling is stronger than a certain critical value. Below that value they exist as essentially itinerant electrons. We propose that the abrupt crossover between the two regimes can be described by resonant pairing similar to the Feshbach resonance in binary atomic collision processes. Given the intrinsically local nature of the exchange of pairs of itinerant electrons and localized bipolarons, we demonstrate the occurrence of such a resonance on a finite-size cluster made out of metallic atoms surrounding a polaronic ligand center.Comment: 7 pages, 4 figures, to be published in Europhysics Letter

    Nodal/Antinodal Dichotomy and the Two Gaps of a Superconducting Doped Mott Insulator

    Full text link
    We study the superconducting state of the hole-doped two-dimensional Hubbard model using Cellular Dynamical Mean Field Theory, with the Lanczos method as impurity solver. In the under-doped regime, we find a natural decomposition of the one-particle (photoemission) energy-gap into two components. The gap in the nodal regions, stemming from the anomalous self-energy, decreases with decreasing doping. The antinodal gap has an additional contribution from the normal component of the self-energy, inherited from the normal-state pseudogap, and it increases as the Mott insulating phase is approached.Comment: Corrected typos, 4.5 pages, 4 figure
    • …
    corecore