839 research outputs found

    Unifying Class-Based Representation Formalisms

    Full text link
    The notion of class is ubiquitous in computer science and is central in many formalisms for the representation of structured knowledge used both in knowledge representation and in databases. In this paper we study the basic issues underlying such representation formalisms and single out both their common characteristics and their distinguishing features. Such investigation leads us to propose a unifying framework in which we are able to capture the fundamental aspects of several representation languages used in different contexts. The proposed formalism is expressed in the style of description logics, which have been introduced in knowledge representation as a means to provide a semantically well-founded basis for the structural aspects of knowledge representation systems. The description logic considered in this paper is a subset of first order logic with nice computational characteristics. It is quite expressive and features a novel combination of constructs that has not been studied before. The distinguishing constructs are number restrictions, which generalize existence and functional dependencies, inverse roles, which allow one to refer to the inverse of a relationship, and possibly cyclic assertions, which are necessary for capturing real world domains. We are able to show that it is precisely such combination of constructs that makes our logic powerful enough to model the essential set of features for defining class structures that are common to frame systems, object-oriented database languages, and semantic data models. As a consequence of the established correspondences, several significant extensions of each of the above formalisms become available. The high expressiveness of the logic we propose and the need for capturing the reasoning in different contexts forces us to distinguish between unrestricted and finite model reasoning. A notable feature of our proposal is that reasoning in both cases is decidable. We argue that, by virtue of the high expressive power and of the associated reasoning capabilities on both unrestricted and finite models, our logic provides a common core for class-based representation formalisms

    Updating DL-Lite ontologies through first-order queries

    Get PDF
    In this paper we study instance-level update in DL-LiteA, the description logic underlying the OWL 2 QL standard. In particular we focus on formula-based approaches to ABox insertion and deletion. We show that DL-LiteA, which is well-known for enjoying first-order rewritability of query answering, enjoys a first-order rewritability property also for updates. That is, every update can be reformulated into a set of insertion and deletion instructions computable through a nonrecursive datalog program. Such a program is readily translatable into a first-order query over the ABox considered as a database, and hence into SQL. By exploiting this result, we implement an update component for DLLiteA-based systems and perform some experiments showing that the approach works in practice.Peer ReviewedPostprint (author's final draft

    Ontology-based data access to Slegge

    Get PDF
    We report on our experience in ontology-based data access to the Slegge database at Statoil and share the resources employed in this use case: end-user information needs (in natural language), their translations into SPARQL, the Subsurface Exploration Ontology, the schema of the Slegge database with integrity constraints, and the mappings connecting the ontology and the schema

    Ontology-Based Data Access and Integration

    Get PDF
    An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates. In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used

    Ontology-based data access with databases: a short course

    Get PDF
    Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop

    Verification of Hierarchical Artifact Systems

    Get PDF
    Data-driven workflows, of which IBM's Business Artifacts are a prime exponent, have been successfully deployed in practice, adopted in industrial standards, and have spawned a rich body of research in academia, focused primarily on static analysis. The present work represents a significant advance on the problem of artifact verification, by considering a much richer and more realistic model than in previous work, incorporating core elements of IBM's successful Guard-Stage-Milestone model. In particular, the model features task hierarchy, concurrency, and richer artifact data. It also allows database key and foreign key dependencies, as well as arithmetic constraints. The results show decidability of verification and establish its complexity, making use of novel techniques including a hierarchy of Vector Addition Systems and a variant of quantifier elimination tailored to our context.Comment: Full version of the accepted PODS pape

    Polynomial conjunctive query rewriting under unary inclusion dependencies

    Get PDF
    Ontology-based data access (OBDA) is widely accepted as an important ingredient of the new generation of information systems. In the OBDA paradigm, potentially incomplete relational data is enriched by means of ontologies, representing intensional knowledge of the application domain. We consider the problem of conjunctive query answering in OBDA. Certain ontology languages have been identified as FO-rewritable (e.g., DL-Lite and sticky-join sets of TGDs), which means that the ontology can be incorporated into the user's query, thus reducing OBDA to standard relational query evaluation. However, all known query rewriting techniques produce queries that are exponentially large in the size of the user's query, which can be a serious issue for standard relational database engines. In this paper, we present a polynomial query rewriting for conjunctive queries under unary inclusion dependencies. On the other hand, we show that binary inclusion dependencies do not admit polynomial query rewriting algorithms

    Computing FO-Rewritings in EL in Practice: from Atomic to Conjunctive Queries

    Full text link
    A prominent approach to implementing ontology-mediated queries (OMQs) is to rewrite into a first-order query, which is then executed using a conventional SQL database system. We consider the case where the ontology is formulated in the description logic EL and the actual query is a conjunctive query and show that rewritings of such OMQs can be efficiently computed in practice, in a sound and complete way. Our approach combines a reduction with a decomposed backwards chaining algorithm for OMQs that are based on the simpler atomic queries, also illuminating the relationship between first-order rewritings of OMQs based on conjunctive and on atomic queries. Experiments with real-world ontologies show promising results

    Eliminating Recursion from Monadic Datalog Programs on Trees

    Full text link
    We study the problem of eliminating recursion from monadic datalog programs on trees with an infinite set of labels. We show that the boundedness problem, i.e., determining whether a datalog program is equivalent to some nonrecursive one is undecidable but the decidability is regained if the descendant relation is disallowed. Under similar restrictions we obtain decidability of the problem of equivalence to a given nonrecursive program. We investigate the connection between these two problems in more detail
    corecore