2,898 research outputs found
Detecting the Cosmic Gravitational Wave Background with the Big Bang Observer
The detection of the Cosmic Microwave Background Radiation (CMB) was one of
the most important cosmological discoveries of the last century. With the
development of interferometric gravitational wave detectors, we may be in a
position to detect the gravitational equivalent of the CMB in this century. The
Cosmic Gravitational Background (CGB) is likely to be isotropic and stochastic,
making it difficult to distinguish from instrument noise. The contribution from
the CGB can be isolated by cross-correlating the signals from two or more
independent detectors. Here we extend previous studies that considered the
cross-correlation of two Michelson channels by calculating the optimal signal
to noise ratio that can be achieved by combining the full set of interferometry
variables that are available with a six link triangular interferometer. In
contrast to the two channel case, we find that the relative orientation of a
pair of coplanar detectors does not affect the signal to noise ratio. We apply
our results to the detector design described in the Big Bang Observer (BBO)
mission concept study and find that BBO could detect a background with
.Comment: 15 pages, 12 Figure
Copper cable theft: revisiting the price–theft hypothesis
Objectives: To test the commonly espoused but little examined hypothesis that fluctuations in the price of metal are associated with changes in the volume of metal theft. Specifically, we analyze the relationship between the price of copper and the number of police recorded 'live’ copper cable thefts from the British railway network (2006 to 2012)
The Effects of Orbital Motion on LISA Time Delay Interferometry
In an effort to eliminate laser phase noise in laser interferometer
spaceborne gravitational wave detectors, several combinations of signals have
been found that allow the laser noise to be canceled out while gravitational
wave signals remain. This process is called time delay interferometry (TDI). In
the papers that defined the TDI variables, their performance was evaluated in
the limit that the gravitational wave detector is fixed in space. However, the
performance depends on certain symmetries in the armlengths that are available
if the detector is fixed in space, but that will be broken in the actual
rotating and flexing configuration produced by the LISA orbits. In this paper
we investigate the performance of these TDI variables for the real LISA orbits.
First, addressing the effects of rotation, we verify Daniel Shaddock's result
that the Sagnac variables will not cancel out the laser phase noise, and we
also find the same result for the symmetric Sagnac variable. The loss of the
latter variable would be particularly unfortunate since this variable also
cancels out gravitational wave signal, allowing instrument noise in the
detector to be isolated and measured. Fortunately, we have found a set of more
complicated TDI variables, which we call Delta-Sagnac variables, one of which
accomplishes the same goal as the symmetric Sagnac variable to good accuracy.
Finally, however, as we investigate the effects of the flexing of the detector
arms due to non-circular orbital motion, we show that all variables, including
the interferometer variables, which survive the rotation-induced loss of
direction symmetry, will not completely cancel laser phase noise when the
armlengths are changing with time. This unavoidable problem will place a
stringent requirement on laser stability of 5 Hz per root Hz.Comment: 12 pages, 2 figure
Chaotic behavior in a Z_2 x Z_2 field theory
We investigate the presence of chaos in a system of two real scalar fields
with discrete Z_2 x Z_2 symmetry. The potential that identify the system is
defined with a real parameter r and presents distinct features for r>0 and for
r<0. For static field configurations, the system supports two topological
sectors for r>0, and only one for r<0. Under the assumption of spatially
homogeneous fields, the system exhibts chaotic behavior almost everywhere in
parameter space. In particular a more complex dynamics appears for r>0; in this
case chaos can decrease for increasing energy, a fact that is absent for r<0.Comment: Revtex, 13 pages, no figures. Version with figures in Int. J. Mod.
Phys. A14 (1999) 496
Chaos in the Einstein-Yang-Mills Equations
Yang-Mills color fields evolve chaotically in an anisotropically expanding
universe. The chaotic behaviour differs from that found in anisotropic
Mixmaster universes. The universe isotropizes at late times, approaching the
mean expansion rate of a radiation-dominated universe. However, small chaotic
oscillations of the shear and color stresses continue indefinitely. An
invariant, coordinate-independent characterisation of the chaos is provided by
means of fractal basin boundaries.Comment: 3 pages LaTeX + 3 pages of figure
Tests of Bayesian Model Selection Techniques for Gravitational Wave Astronomy
The analysis of gravitational wave data involves many model selection
problems. The most important example is the detection problem of selecting
between the data being consistent with instrument noise alone, or instrument
noise and a gravitational wave signal. The analysis of data from ground based
gravitational wave detectors is mostly conducted using classical statistics,
and methods such as the Neyman-Pearson criteria are used for model selection.
Future space based detectors, such as the \emph{Laser Interferometer Space
Antenna} (LISA), are expected to produced rich data streams containing the
signals from many millions of sources. Determining the number of sources that
are resolvable, and the most appropriate description of each source poses a
challenging model selection problem that may best be addressed in a Bayesian
framework. An important class of LISA sources are the millions of low-mass
binary systems within our own galaxy, tens of thousands of which will be
detectable. Not only are the number of sources unknown, but so are the number
of parameters required to model the waveforms. For example, a significant
subset of the resolvable galactic binaries will exhibit orbital frequency
evolution, while a smaller number will have measurable eccentricity. In the
Bayesian approach to model selection one needs to compute the Bayes factor
between competing models. Here we explore various methods for computing Bayes
factors in the context of determining which galactic binaries have measurable
frequency evolution. The methods explored include a Reverse Jump Markov Chain
Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes
Information Criterion (BIC), and the Laplace approximation to the model
evidence. We find good agreement between all of the approaches.Comment: 11 pages, 6 figure
Extracting galactic binary signals from the first round of Mock LISA Data Challenges
We report on the performance of an end-to-end Bayesian analysis pipeline for
detecting and characterizing galactic binary signals in simulated LISA data.
Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM)
algorithm, which has been optimized to search for tens of thousands of
overlapping signals across the LISA band. The BAM algorithm employs Bayesian
model selection to determine the number of resolvable sources, and provides
posterior distribution functions for all the model parameters. The BAM
algorithm performed almost flawlessly on all the Round 1 Mock LISA Data
Challenge data sets, including those with many highly overlapping sources. The
only misses were later traced to a coding error that affected high frequency
sources. In addition to the BAM algorithm we also successfully tested a Genetic
Algorithm (GA), but only on data sets with isolated signals as the GA has yet
to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin,
Dec. '06
Scaling Bounded Model Checking By Transforming Programs With Arrays
Bounded Model Checking is one the most successful techniques for finding bugs
in program. However, model checkers are resource hungry and are often unable to
verify programs with loops iterating over large arrays.We present a
transformation that enables bounded model checkers to verify a certain class of
array properties. Our technique transforms an array-manipulating (ANSI-C)
program to an array-free and loop-free (ANSI-C) program thereby reducing the
resource requirements of a model checker significantly. Model checking of the
transformed program using an off-the-shelf bounded model checker simulates the
loop iterations efficiently. Thus, our transformed program is a sound
abstraction of the original program and is also precise in a large number of
cases - we formally characterize the class of programs for which it is
guaranteed to be precise. We demonstrate the applicability and usefulness of
our technique on both industry code as well as academic benchmarks
Topology of the Universe: background and recent observational approaches
Is the Universe (a spatial section thereof) finite or infinite? Knowing the
global geometry of a Friedmann-Lema\^{\i}tre (FL) universe requires knowing
both its curvature and its topology. A flat or hyperbolic (``open'') FL
universe is {\em not} necessarily infinite in volume.
Multiply connected flat and hyperbolic models are, in general, as consistent
with present observations on scales of 1-20{\hGpc} as are the corresponding
simply connected flat and hyperbolic models. The methods of detecting multiply
connected models (MCM's) are presently in their pioneering phase of development
and the optimal observationally realistic strategy is probably yet to be
calculated. Constraints against MCM's on ~1-4 h^{-1} Gpc scales have been
claimed, but relate more to inconsistent assumptions on perturbation statistics
rather than just to topology. Candidate 3-manifolds based on hypothesised
multiply imaged objects are being offered for observational refutation.
The theoretical and observational sides of this rapidly developing subject
have yet to make any serious contact, but the prospects of a significant
detection in the coming decade may well propel the two together.Comment: 5 pages, proceedings of the Workshop ``Cosmology: Observations
Confront Theories,'' 11-17 Jan 1999, IIT Kharagpur, West Bengal, to appear in
Pramana - Journal of Physic
The Challenges in Gravitational Wave Astronomy for Space-Based Detectors
The Gravitational Wave (GW) universe contains a wealth of sources which, with
the proper treatment, will open up the universe as never before. By observing
massive black hole binaries to high redshifts, we should begin to explore the
formation process of seed black holes and track galactic evolution to the
present day. Observations of extreme mass ratio inspirals will allow us to
explore galactic centers in the local universe, as well as providing tests of
General Relativity and constraining the value of Hubble's constant. The
detection of compact binaries in our own galaxy may allow us to model stellar
evolution in the Milky Way. Finally, the detection of cosmic (super)strings and
a stochastic background would help us to constrain cosmological models.
However, all of this depends on our ability to not only resolve sources and
carry out parameter estimation, but also on our ability to define an optimal
data analysis strategy. In this presentation, I will examine the challenges
that lie ahead in GW astronomy for the ESA L3 Cosmic Vision mission, eLISA.Comment: 12 pages. Plenary presentation to appear in the Proceedings of the
Sant Cugat Forum on Astrophysics, Sant Cugat, April 22-25, 201
- …