101 research outputs found

    Bronchopulmonary Dysplasia

    Get PDF
    Hospitalizations for respiratory syncytial virus bronchioliti

    Development and validation of an improved algorithm for overlaying flexible molecules

    Get PDF
    A program for overlaying multiple flexible molecules has been developed. Candidate overlays are generated by a novel fingerprint algorithm, scored on three objective functions (union volume, hydrogen-bond match, and hydrophobic match), and ranked by constrained Pareto ranking. A diverse subset of the best ranked solutions is chosen using an overlay-dissimilarity metric. If necessary, the solutions can be optimised. A multi-objective genetic algorithm can be used to find additional overlays with a given mapping of chemical features but different ligand conformations. The fingerprint algorithm may also be used to produce constrained overlays, in which user-specified chemical groups are forced to be superimposed. The program has been tested on several sets of ligands, for each of which the true overlay is known from protein–ligand crystal structures. Both objective and subjective success criteria indicate that good results are obtained on the majority of these sets

    Association of polygenic score and the involvement of cholinergic and glutamatergic pathways with lithium treatment response in patients with bipolar disorder

    Get PDF
    Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium’s possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response — defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P < 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 × 10−12, R2 = 1.9%) and continuous (P = 6.4 × 10−9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22–5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 × 10−4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment

    Working Toward Better Cancer Pain Management for Children

    No full text

    Neuropathic pain referrals to a multidisciplinary pediatric cancer pain service

    No full text
    Presented in part as a poster at the International Federation of Pediatric Pain conference, Nova Scotia, Canada, October 14, 2011.Abstract not availableDoralina L. Anghelescu, Lane G. Faughnan, Mark P. Popenhagen, Linda L. Oakes, Deqing Pei, Laura L. Burgoyn

    Phosphoinositide 3-kinase, Src, and Akt modulate acute ventilation-induced vascular permeability increases in mouse lungs

    No full text
    To determine the role of phosphoinositide 3-OH kinase (PI3K) pathways in the acute vascular permeability increase associated with ventilator-induced lung injury, we ventilated isolated perfused lungs and intact C57BL/6 mice with low and high peak inflation pressures (PIP). In isolated lungs, filtration coefficients (Kf) increased significantly after ventilation at 30 cmH2O (high PIP) for successive periods of 15, 30 (4.1-fold), and 50 (5.4-fold) min. Pretreatment with 50 µM of the PI3K inhibitor, LY-294002, or 20 µMPP2, a Src kinase inhibitor, significantly attenuated the increase in Kf, whereas 10 µM Akt inhibitor IV significantly augmented the increased Kf. There were no significant differences in Kf or lung wet-to-dry weight (W/D) ratios between groups ventilated with 9 cmH 2O PIP (low PIP), with or without inhibitor treatment. Total lung ß-catenin was unchanged in any low PIP isolated lung group, but Akt inhibition during high PIP ventilation significantly decreased total ß-catenin by 86%. Ventilation of intact mice with 55 cmH2O PIP for up to 60 min also increased lung vascular permeability, indicated by increases in lung lavage albumin concentration and lung W/D ratios. In these lungs, tyrosine phosphorylation of ß-catenin and serine/threonine phosphorylation of Akt, glycogen synthase kinase 3ß (GSK3ß), and ERK1/2 increased significantly with peak effects at 60 min. Thus mechanical stress activation of PI3K and Src may increase lung vascular permeability through tyrosine phosphorylation, but simultaneous activation of the PI3K-Akt-GSK3ß pathway tends to limit this permeability response, possibly by preserving cellular ß-catenin. Copyright © 2007 the American Physiological Society

    Chemokine receptor CXCR3 agonist prevents human T-cell migration in a humanized model of arthritic inflammation

    Get PDF
    The recruitment of T lymphocytes during diseases such as rheumatoid arthritis is regulated by stimulation of the chemokine receptors expressed by these cells. This study was designed to assess the potential of a CXCR3-specific small-molecule agonist to inhibit the migration of activated human T cells toward multiple chemokines. Further experiments defined the molecular mechanism for this anti-inflammatory activity. Analysis in vitro demonstrated agonist induced internalization of both CXCR3 and other chemokine receptors coexpressed by CXCR3+ T cells. Unlike chemokine receptor-specific antagonists, the CXCR3 agonist inhibited migration of activated T cells toward the chemokine mixture in synovial fluid from patients with active rheumatoid arthritis. A humanized mouse air-pouch model showed that intravenous treatment with the CXCR3 agonist prevented inflammatory migration of activated human T cells toward this synovial fluid. A potential mechanism for this action was defined by demonstration that the CXCR3 agonist induces receptor cross-phosphorylation within CXCR3-CCR5 heterodimers on the surface of activated T cells. This study shows that generalized chemokine receptor desensitization can be induced by specific stimulation of a single chemokine receptor on the surface of activated human T cells. A humanized mouse model was used to demonstrate that this receptor desensitization inhibits the inflammatory response that is normally produced by the chemokines present in synovial fluid from patients with active rheumatoid arthritis
    corecore