27,110 research outputs found

    Eliminating the Hadronic Uncertainty

    Get PDF
    The Standard Model Lagrangian requires the values of the fermion masses, the Higgs mass and three other experimentally well-measured quantities as input in order to become predictive. These are typically taken to be α\alpha, GμG_\mu and MZM_Z. Using the first of these, however, introduces a hadronic contribution that leads to a significant error. If a quantity could be found that was measured at high energy with sufficient precision then it could be used to replace α\alpha as input. The level of precision required for this to happen is given for a number of precisely-measured observables. The WW boson mass must be measured with an error of ±13\pm13\,MeV, ΓZ\Gamma_Z to 0.70.7\,MeV and polarization asymmetry, ALRA_{LR}, to ±0.002\pm0.002 that would seem to be the most promising candidate. The r\^ole of renormalized parameters in perturbative calculations is reviewed and the value for the electromagnetic coupling constant in the MS‾\overline{\rm MS} renormalization scheme that is consistent with all experimental data is obtained to be αMS‾−1(MZ2)=128.17\alpha^{-1}_{\overline{\rm MS}}(M^2_Z)=128.17.Comment: 8 pages LaTeX2

    Head-On Collision of Neutron Stars As A Thought Experiment

    Get PDF
    The head-on collision of identical neutron stars from rest at infinity requires a numerical simulation in full general relativity for a complete solution. Undaunted, we provide a relativistic, analytic argument to suggest that during the collision, sufficient thermal pressure is always generated to support the hot remnant in quasi-static stable equilibrium against collapse prior to slow cooling via neutrino emission. Our conclusion is independent of the total mass of the progenitors and holds even if the remnant greatly exceeds the maximum mass of a cold neutron star.Comment: to appear in Physical Review D (revtex, 3 figs, 5 pgs

    Normalizers of Irreducible Subfactors

    Full text link
    We consider normalizers of an irreducible inclusion N⊆MN\subseteq M of II1\mathrm{II}_1 factors. In the infinite index setting an inclusion uNu∗⊆NuNu^*\subseteq N can be strict, forcing us to also investigate the semigroup of one-sided normalizers. We relate these normalizers of NN in MM to projections in the basic construction and show that every trace one projection in the relative commutant N′∩N'\cap is of the form u∗eNuu^*e_Nu for some unitary u∈Mu\in M with uNu∗⊆NuNu^*\subseteq N. This enables us to identify the normalizers and the algebras they generate in several situations. In particular each normalizer of a tensor product of irreducible subfactors is a tensor product of normalizers modulo a unitary. We also examine normalizers of irreducible subfactors arising from subgroup--group inclusions H⊆GH\subseteq G. Here the normalizers are the normalizing group elements modulo a unitary from L(H)L(H). We are also able to identify the finite trace L(H)L(H)-bimodules in ℓ2(G)\ell^2(G) as double cosets which are also finite unions of left cosets.Comment: 33 Page

    A postmortem investigation of the Type IIb supernova 2001ig

    Full text link
    We present images taken with the GMOS instrument on Gemini-South, in excellent (<0.5 arcsec) seeing, of SN 2001ig in NGC 7424, ~1000 days after explosion. A point source seen at the site of the SN is shown to have colours inconsistent with being an H II region or a SN 1993J-like remnant, but can be matched to a late-B through late-F supergiant with A_V<1. We believe this object is the massive binary companion responsible for periodic modulation in mass loss material around the Wolf-Rayet progenitor which gave rise to significant structure in the SN radio light curve.Comment: 5 pages, 3 figures. Accepted for publication in MNRAS Letters. Fig. 1 resolution degraded to meet size limitations; full resolution version available from http://www.aao.gov.au/local/www/sdr/pubs/sn2001ig_gmos.ps.g

    Are the Earth and the Moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling

    Get PDF
    The main objective of the present study is to discuss in detail the results obtained from an inversion of the Apollo lunar seismic data set, lunar mass, and moment of inertia. We inverted directly for lunar chemical composition and temperature using the model system CaO-FeO-MgO-Al2O3-SiO2. Using Gibbs free energy minimization, stable mineral phases at the temperatures and pressures of interest, their modes and physical properties are calculated. We determine the compositional range of the oxide elements, thermal state, Mg#, mineralogy and physical structure of the lunar interior, as well as constraining core size and density. The results indicate a lunar mantle mineralogy that is dominated by olivine and orthopyroxene ( 80 vol%), with the remainder being composed of clinopyroxene and an aluminous phase (plagioclase, spinel, and garnet present in the depth ranges 0–150 km, 150–200 km, and >200 km, respectively). This model is broadly consistent with constraints on mantle mineralogy derived from the experimental and observational study of the phase lationships and trace element compositions of lunar mare basalts and picritic glasses. In particular, by melting a typical model mantle composition using the pMELTS algorithm, we found that a range of batch melts generated from these models have features in common with low Ti mare basalts and picritic glasses. Our results also indicate a bulk lunar composition and Mg# different to that of the Earth’s upper mantle, represented by the pyrolite composition. This difference is reflected in a lower bulk lunar Mg# ( 0.83). Results also indicate a small iron-like core with a radius around 340 km.The Carlsberg Foundation, NER

    Importance Sampling: Intrinsic Dimension and Computational Cost

    Get PDF
    The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.Comment: Statistical Scienc

    Well-Posedness And Accuracy Of The Ensemble Kalman Filter In Discrete And Continuous Time

    Get PDF
    The ensemble Kalman filter (EnKF) is a method for combining a dynamical model with data in a sequential fashion. Despite its widespread use, there has been little analysis of its theoretical properties. Many of the algorithmic innovations associated with the filter, which are required to make a useable algorithm in practice, are derived in an ad hoc fashion. The aim of this paper is to initiate the development of a systematic analysis of the EnKF, in particular to do so in the small ensemble size limit. The perspective is to view the method as a state estimator, and not as an algorithm which approximates the true filtering distribution. The perturbed observation version of the algorithm is studied, without and with variance inflation. Without variance inflation well-posedness of the filter is established; with variance inflation accuracy of the filter, with resepct to the true signal underlying the data, is established. The algorithm is considered in discrete time, and also for a continuous time limit arising when observations are frequent and subject to large noise. The underlying dynamical model, and assumptions about it, is sufficiently general to include the Lorenz '63 and '96 models, together with the incompressible Navier-Stokes equation on a two-dimensional torus. The analysis is limited to the case of complete observation of the signal with additive white noise. Numerical results are presented for the Navier-Stokes equation on a two-dimensional torus for both complete and partial observations of the signal with additive white noise
    • …
    corecore