4,823 research outputs found

    High-fidelity simulation of an ultrasonic standing-wave thermoacoustic engine with bulk viscosity effects

    Full text link
    We have carried out boundary-layer-resolved, unstructured fully-compressible Navier--Stokes simulations of an ultrasonic standing-wave thermoacoustic engine (TAE) model. The model is constructed as a quarter-wavelength engine, approximately 4 mm by 4 mm in size and operating at 25 kHz, and comprises a thermoacoustic stack and a coin-shaped cavity, a design inspired by Flitcroft and Symko (2013). Thermal and viscous boundary layers (order of 10 μ\mathrm{\mu}m) are resolved. Vibrational and rotational molecular relaxation are modeled with an effective bulk viscosity coefficient modifying the viscous stress tensor. The effective bulk viscosity coefficient is estimated from the difference between theoretical and semi-empirical attenuation curves. Contributions to the effective bulk viscosity coefficient can be identified as from vibrational and rotational molecular relaxation. The inclusion of the coefficient captures acoustic absorption from infrasonic (∼\sim10 Hz) to ultrasonic (∼\sim100 kHz) frequencies. The value of bulk viscosity depends on pressure, temperature, and frequency, as well as the relative humidity of the working fluid. Simulations of the TAE are carried out to the limit cycle, with growth rates and limit-cycle amplitudes varying non-monotonically with the magnitude of bulk viscosity, reaching a maximum for a relative humidity level of 5%. A corresponding linear model with minor losses was developed; the linear model overpredicts transient growth rate but gives an accurate estimate of limit cycle behavior. An improved understanding of thermoacoustic energy conversion in the ultrasonic regime based on a high-fidelity computational framework will help to further improve the power density advantages of small-scale thermoacoustic engines.Comment: 55th AIAA Aerospace Sciences Meeting, AIAA SciTech, 201

    Molecular evolution of aphids and their primary ( Buchnera sp.) and secondary endosymbionts: implications for the role of symbiosis in insect evolution.

    Get PDF
    Aphids maintain an obligate, endosymbiotic association with Buchnera sp., a bacterium closely related to Escherichia coli. Bacteria are housed in specialized cells of organ-like structures called bacteriomes in the hemocoel of the aphid and are maternally transmitted. Phylogenetic studies have shown that the association had a single origin, dated about 200-250 million years ago, and that host and endosymbiont lineages have evolved in parallel since then. However, the pattern of deepest branching within the aphid family remains unsolved, which thereby hampers tin appraisal of, for example, the role played by horizontal gene transfer in the early evolution of Buchnera. The main role of Buchnera in this association is the biosynthesis and provisioning of essential amino acids to its aphid host. Physiological and metabolic studies have recently substantiated such nutritional role. In addition, genetic studies of Buchnera from several aphids have shown additional modifications, such as strong genome reduction, high A+T content compared to free-living bacteria, differential evolutionary rates, a relative increase in the number of non-synonymous substitutions, and gene amplification mediated by plasmids. Symbiosis is an active process in insect evolution cis revealed by the intermediate values of the previous characteristics showed by secondary symbionts compared to free-living bacteria and Buchnera

    Oxygen reduction in an acid medium : electrocatalysis by CoNPc(1,2) impregnated on a carbon black support; effect of loading and heat treatment

    Get PDF
    O2 reduction in an acid medium has been investigated on a transition metal macrocycle, CoNPc(1,2), impregnated on a carbon black support with a high dibutylphthalate adsorption value, using a rotating disk electrode and voltammetry techniques described previously, combined with X-ray photoelectron spectroscopy measurements. Optimal activity was found for a bilayer coverage (n = 2) at 17%-18% w/w loading. Heat treatment seems to be beneficial for n 3: it increases the overall number N of exchanged electrons and improves the electrode wetting. For the most active samples, mixed Co(II)/Co(III) valencies were displayed

    Electroweak phase transition in the MSSM with four generations

    Full text link
    By assuming the existence of the sequential fourth generation to the minimal supersymmetric standard model (MSSM), we study the possibility of a strongly first-order electroweak phase transition. We find that there is a parameter region of the MSSM where the electroweak phase transition is strongly first order. In that parameter region, the mass of the lighter scalar Higgs boson is calculated to be above the experimental lower bound, and the scalar quarks of the third and the fourth generations are heavier than the corresponding quarks.Comment: 12 pages, 2 tables, 2 figure

    Verification of TG-61 dose for synchrotron-produced monochromatic x-ray beams using fluence-normalized MCNP5 calculations

    Get PDF
    Ion chamber dosimetry is being used to calibrate dose for cell irradiations designed to investigate photoactivated Auger electron therapy at the Louisiana State University CAMD synchrotron facility. This study performed a dosimetry intercomparison for synchrotron-produced monochromatic x-ray beams at 25 and 35 keV. Ion chamber depth-dose measurements in a PMMA phantom were compared with the product of MCNP5 Monte Carlo calculations of dose per fluence and measured incident fluence. Monochromatic beams of 25 and 35 keV were generated on the tomography beamline at CAMD. A cylindrical, air-equivalent ion chamber was used to measure the ionization created in a 10x10x10-cm3 PMMA phantom for depths from 0.6 to 7.7 cm. The American Association of Physicists in Medicine TG-61 protocol was applied to convert measured ionization into dose. Photon fluence was determined using a NaI detector to make scattering measurements of the beam from a thin polyethylene target at angles 30 degrees to 60 degrees. Differential Compton and Rayleigh scattering cross sections obtained from xraylib, an ANSI C library for x-ray-matter interactions, were applied to derive the incident fluence. MCNP5 simulations of the irradiation geometry provided the dose deposition per photon fluence as a function of depth in the phantom. At 25 keV the fluence-normalized MCNP5 dose overestimated the ion-chamber measured dose by an average of 7.2+/-3.0% to 2.1+/-3.0% for PMMA depths from 0.6 to 7.7 cm, respectively. At 35 keV the fluence-normalized MCNP5 dose underestimated the ion-chamber measured dose by an average of 1.0+/-3.4% to 2.5+/-3.4%, respectively. These results showed that TG-61 ion chamber dosimetry, used to calibrate dose output for cell irradiations, agreed with fluence-normalized MCNP5 calculations to within approximately 7% and 3% at 25 and 35 keV, respectively.Comment: 22 pages, 5 figure

    Oxygen reduction in acid media: effect of iron substitution by cobalt on heat-treated naphthalocyanine impregnations supported on preselected carbon blacks

    Get PDF
    FeNPc(1.2) impregnations were investigated at various loadings using a rotating-disk electrode, voltammetry and X-ray photoelectron spectroscopy (XPS) techniques. Optimal activity takes place at monolayer coverage, and major demetallation occurs after prolonged exposure to acid solution. The substitution of Fe by Co enables the electrochemical performances to reach those presented by 10% Pt on Vulcan and stops the demetallation process. The application of fast atomic bombardment secondary ion mass spectrometry (FABS) together with XPS sheds light on the detrimental role of some electrophilic groups attached to the carbon black-catalyst interface

    The Constraints on CP Violating Phases in models with a dynamical gluino phase

    Full text link
    We have analyzed the electric dipole moment and the Higgs mass constraints on the supersymmetric model which offers dynamical solutions to the \mu and strong CP problems. The trilinear coupling phases, and \tan\beta-|\mu| are strongly correlated, particularly in the low-\tan\beta regime. Certain values of the phases of the trilinear couplings are forbidden, whereas the CP violating phase from the chargino sector is imprisoned to lie near a CP conserving point, by the Higgs mass and electric dipole moment constraints.Comment: 19 pages, 11 eps fig
    • …
    corecore