99 research outputs found

    Experimental control of pattern formation by photonic lattices

    Get PDF
    We study the control of modulational instability and pattern formation in a nonlinear dissipative feedback system with a periodic modulation of the material refractive index. We use a one-dimensional photonic lattice in a single-mirror feedback configuration and identify three mechanisms for pattern control: bandgap suppression of instability modes, periodicity induced pattern modes, and orientational pattern control.The authors acknowledge the support of the Conseil RĂ©gional de Lorraine, the bilateral FrenchAustralian Science and Technology program, and the Australian Research Council through Discovery projects

    Neglected Tropical Diseases. The Place of Ivermectin in the Elimination Programs

    Get PDF
    The World Health Organization identifies as neglected nineteen tropical diseases with bacterial, viral and parasitic etiology, of which two are ophthalmological. These diseases affect over one billion people worldwide, especially communities in developing countries, with limited access to healthcare, clean water, and sewerage. These include: trachoma, onchocerciasis (river blindness), leprosy, leishmaniasis, schistosomiasis, foodborne trematode infections, dracunculiasis, Chagas disease, Human African trypanosomiasis, lymphatic filariasis (elephantiasis), cysticercosis, echinococcosis, soil-transmitted helminthiases, Dengue, rabies, yaws, scabies, Buruli ulcer, mycetoma, chromoblastomycosis and other deep mycoses. The global effort in fighting neglected tropical diseases is one of the biggest initiatives in the field of public health. On the 28th of January 2021 the World Health Organization initiated a new ten-year plan for the eradication of neglected tropical diseases. It aims to lower the mortality, new disability cases and suffering of more than one billion people

    Nonlinear Bloch-wave interaction and Bragg scattering in optically-induced lattices

    Full text link
    We study, both theoretically and experimentally, the Bragg scattering of light in optically-induced photonic lattices and reveal the key physical mechanisms which govern nonlinear self-action of narrow beams under the combined effects of Bragg scattering and wave diffraction, allowing for selecting bands with different effective dispersion.Comment: 4 pages, 6 figure

    Observation of discrete vortex solitons in optically-induced photonic lattices

    Full text link
    We report on the frst experimental observation of discrete vortex solitons in two-dimensional optically-induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a broad class of singular beams.Comment: 4pages, 5 colour figures. to appear in PR

    Soliton topology versus discrete symmetry in optical lattices

    Full text link
    We address the existence of vortex solitons supported by azimuthally modulated lattices and reveal how the global lattice discrete symmetry has fundamental implications on the possible topological charges of solitons. We set a general ``charge rule'' using group-theory techniques, which holds for all lattices belonging to a given symmetry group. Focusing in the case of Bessel lattices allows us to derive also a overall stability rule for the allowed vortex solitons.Comment: 4 pages, 3 figures. To appear in Phys. Rev. Let

    Reduced-symmetry two-dimensional solitons in photonic lattices

    Full text link
    We demonstrate theoretically and experimentally a novel type of localized beams supported by the combined effects of total internal and Bragg reflection in nonlinear two-dimensional square periodic structures. Such localized states exhibit strong anisotropy in their mobility properties, being highly mobile in one direction and trapped in the other, making them promising candidates for optical routing in nonlinear lattices.Comment: 5 pages, 4 figure

    Stable spatiotemporal solitons in Bessel optical lattices

    Full text link
    We investigate the existence and stability of three-dimensional (3D) solitons supported by cylindrical Bessel lattices (BLs) in self-focusing media. If the lattice strength exceeds a threshold value, we show numerically, and using the variational approximation, that the solitons are stable within one or two intervals of values of their norm. In the latter case, the Hamiltonian-vs.-norm diagram has a "swallowtail" shape, with three cuspidal points. The model applies to Bose-Einstein condensates (BECs) and to optical media with saturable nonlinearity, suggesting new ways of making stable 3D BEC solitons and "light bullets" of an arbitrary size.Comment: 9 pages, 4 figures, Phys. Rev. Lett., in pres

    Observation of surface gap solitons in semi-infinite waveguide arrays

    Get PDF
    We report on the first observation of surface gap solitons, recently predicted to exist at the interface between uniform and periodic dielectric media with defocusing nonlinearity [Ya.V. Kartashov et al., Phys. Rev. Lett. 96, 073901 (2006). We demonstrate strong self-trapping at the edge of a LiNbO_3 waveguide array and the formation of staggered surface solitons with propagation constant inside the first photonic band gap. We study the crossover between linear repulsion and nonlinear attraction at the surface, revealing the mechanism of nonlinearity-mediated stabilization of the surface gap modes.Comment: 4 pages, 5 figure

    Stable ring vortex solitons in Bessel optical lattices

    Full text link
    Stable ring vortex solitons, featuring a bright-shape, appear to be very rare in nature. However, here we show that they exist and can be made dynamically stable in defocusing cubic nonlinear media with an imprinted Bessel optical lattice. We find the families of vortex lattice solitons and reveal their salient properties, including the conditions required for their stability. We show that the higher the soliton topological charge, the deeper the lattice modulation necessary for stabilization.Comment: 14 pages, 4 figures, submitted to Physical Review Letter

    Sine-Gordon Soliton on a Cnoidal Wave Background

    Full text link
    The method of Darboux transformation, which is applied on cnoidal wave solutions of the sine-Gordon equation, gives solitons moving on a cnoidal wave background. Interesting characteristics of the solution, i.e., the velocity of solitons and the shift of crests of cnoidal waves along a soliton, are calculated. Solutions are classified into three types (Type-1A, Type-1B, Type-2) according to their apparent distinct properties.Comment: 11 pages, 5 figures, Contents change
    • …
    corecore