3,676 research outputs found
Discovery of pulsations in the X-ray transient 4U 1901+03
We describe observations of the 2003 outburst of the hard-spectrum X-ray
transient 4U 1901+03 with the Rossi X-ray Timing Explorer. The outburst was
first detected in 2003 February by the All-Sky Monitor, and reached a peak
2.5-25 keV flux of 8x10^-9 ergs/cm^2/s (around 240 mCrab). The only other known
outburst occurred 32.2 yr earlier, likely the longest presently known
recurrence time for any X-ray transient. Proportional Counter Array (PCA)
observations over the 5-month duration of the 2003 outburst revealed a 2.763 s
pulsar in a 22.58 d orbit. The detection of pulsations down to a flux of
3x10^-11 ergs/cm^2/s (2.5-25 keV), along with the inferred long-term accretion
rate of 8.1x10^-11 M_sun/yr (assuming a distance of 10 kpc) suggests that the
surface magnetic field strength is below ~5x10^11 G. The corresponding
cyclotron energy is thus below 4 keV, consistent with the non-detection of
resonance features at high energies. Although we could not unambiguously
identify the optical counterpart, the lack of a bright IR candidate within the
1' RXTE error circle rules out a supergiant mass donor. The neutron star in 4U
1901+03 probably accretes from the wind of a main-sequence O-B star, like most
other high-mass binary X-ray pulsars. The almost circular orbit e=0.036
confirms the system's membership in a growing class of wide, low-eccentricity
systems in which the neutron stars may have received much smaller kicks as a
result of their natal supernova explosions.Comment: 7 pages, 6 figures, accepted by ApJ. Very minor addition in response
to referee's comment; updated author affiliatio
Accretion column eclipses in the X-ray pulsars GX 1+4 and RX J0812.4-3114
Sharp dips observed in the pulse profiles of three X-ray pulsars (GX 1+4, RX
J0812.4-3114 and A 0535+26) have previously been suggested to arise from
partial eclipses of the emission region by the accretion column occurring once
each rotation period. We present pulse-phase spectroscopy from Rossi X-ray
Timing Explorer satellite observations of GX 1+4 and RX J0812.4-3114 which for
the first time confirms this interpretation. The dip phase corresponds to the
closest approach of the column axis to the line of sight, and the additional
optical depth for photons escaping from the column in this direction gives rise
to both the decrease in flux and increase in the fitted optical depth measured
at this phase. Analysis of the arrival time of individual dips in GX~1+4
provides the first measurement of azimuthal wandering of a neutron star
accretion column. The column longitude varies stochastically with standard
deviation 2-6 degrees depending on the source luminosity. Measurements of the
phase width of the dip both from mean pulse profiles and individual eclipses
demonstrates that the dip width is proportional to the flux. The variation is
consistent with that expected if the azimuthal extent of the accretion column
depends only upon the Keplerian velocity at the inner disc radius, which varies
as a consequence of the accretion rate Mdot.Comment: 7 pages, 5 figures, accepted by MNRAS. Included reference
Thermonuclear burst physics with RXTE
Recently we have made measurements of thermonuclear burst energetics and
recurrence times which are unprecedented in their precision, largely thanks to
the sensitivity of the Rossi X-ray Timing Explorer. In the "Clocked Burster",
GS 1826-24, hydrogen burns during the burst via the rapid-proton (rp) process,
which has received particular attention in recent years through theoretical and
modelling studies. The burst energies and the measured variation of alpha (the
ratio of persistent to burst flux) with accretion rate strongly suggests solar
metallicity in the neutron star atmosphere, although this is not consistent
with the corresponding variation of the recurrence time. Possible explanations
include extra heating between the bursts, or a change in the fraction of the
neutron star over which accretion takes place. I also present results from 4U
1746-37, which exhibits regular burst trains which are interrupted by "out of
phase" bursts.Comment: 4 pages, 2 figures, AIP conference proceedings format. To appear in
the proceedings of the "X-ray Timing 2003: Rossi and Beyond" meeting held in
Cambridge, MA, November, 200
Angular Momentum Transfer in the Binary X-ray Pulsar GX 1+4
We describe three presentations relating to the X-ray pulsar GX 1+4 at a
workshop on magnetic fields and accretion at the Astrophysical Theory Centre,
Australian National University on 1998, November 12-13. Optical and X-ray
spectroscopy indicate that GX 1+4 is seen through a cloud of gravitationaly
bound matter. We discuss an unstable negative feedback mechanism (originally
proposed by Kotani et al, 1999), based on X-ray heating of this matter which
controls the accretion rate when the source is in a low X-ray luminosity state.
A deep minimum lasting ~6 hours occurred during observations with the RXTE
satellite over 1996, July 19-21. The shape of the X-ray pulses changed
remarkably from before to after the minimum. These changes may be related to
the transition from neutron star spin-down to spin-up which occurred at about
the same time. Smoothed particle hydrodynamic simulations of the effect of
adding matter with opposite angular momentum to an existing disc, show that it
is possible for a number of concentric rings with alternating senses of
rotation to co-exist in a disc. This could provide an explanation for the
step-like changes in Pdot which are observed in GX 1+4. Changes at the inner
boundary of the disc occur at the same timescale as that imposed at the outer
boundary. Reversals of material torque on the neutron star occur at a minimum
in L_X.Comment: 10 pages, 5 figures; accepted for publication by PAS
Spectral variation in the X-ray pulsar GX 1+4 during a low-flux episode
The X-ray pulsar GX 1+4 was observed with the RXTE satellite for a total of
51ks between 1996 July 19 - 21. During this period the flux decreased smoothly
from an initial mean level of ~ 6 X 10^36 erg/s to a minimum of ~ 4 X 10^35
erg/s (2-60 keV, assuming a source distance of 10 kpc) before partially
recovering towards the initial level at the end of the observation.
BATSE pulse timing measurements indicate that a torque reversal took place
approximately 10 d after this observation. Both the mean pulse profile and the
photon spectrum varied significantly. The observed variation in the source may
provide important clues as to the mechanism of torque reversals.
The single best-fitting spectral model was based on a component originating
from thermal photons with kT ~ 1 keV Comptonised by a plasma of temperature kT
\~ 7 keV. Both the flux modulation with phase during the brightest interval and
the evolution of the mean spectra over the course of the observation are
consistent with variations in this model component; with, in addition, a
doubling of the column density nH contributing to the mean spectral change.
A strong flare of duration 50 s was observed during the interval of minimum
flux, with the peak flux ~ 20 times the mean level. Although beaming effects
are likely to mask the true variation in Mdot thought to give rise to the
flare, the timing of a modest increase in flux prior to the flare is consistent
with dual episodes of accretion resulting from successive orbits of a locally
dense patch of matter in the accretion disc.Comment: 8 pages, 3 figures, submitted to MNRA
On the Gannon-Lee Singularity Theorem in Higher Dimensions
The Gannon-Lee singularity theorems give well-known restrictions on the
spatial topology of singularity-free (i.e., nonspacelike geodesically
complete), globally hyperbolic spacetimes. In this paper, we revisit these
classic results in the light of recent developments, especially the failure in
higher dimensions of a celebrated theorem by Hawking on the topology of black
hole horizons. The global hyperbolicity requirement is weakened, and we expand
the scope of the main results to allow for the richer variety of spatial
topologies which are likely to occur in higher-dimensional spacetimes.Comment: 13 pages, no figures, to appear in Class. Quantum Gra
- …