961 research outputs found

    The Temperature of the Cosmic Microwave Background

    Full text link
    The FIRAS data are independently recalibrated using the WMAP data to obtain a CMB temperature of 2.7260 +/- 0.0013. Measurements of the temperature of the cosmic microwave background are reviewed. The determination from the measurements from the literature is cosmic microwave background temperature of 2.72548 +/- 0.00057 K.Comment: 6 Pages 3 figure

    Calibrating Array Detectors

    Get PDF
    The development of sensitive large format imaging arrays for the infrared promises to provide revolutionary capabilities for space astronomy. For example, the Infrared Array Camera (IRAC) on SIRTF will use four 256 x 256 arrays to provide background limited high spatial resolution images of the sky in the 3 to 8 micron spectral region. In order to reach the performance limits possible with this generation of sensitive detectors, calibration procedures must be developed so that uncertainties in detector calibration will always be dominated by photon statistics from the dark sky as a major system noise source. In the near infrared, where the faint extragalactic sky is observed through the scattered and reemitted zodiacal light from our solar system, calibration is particularly important. Faint sources must be detected on this brighter local foreground. We present a procedure for calibrating imaging systems and analyzing such data. In our approach, by proper choice of observing strategy, information about detector parameters is encoded in the sky measurements. Proper analysis allows us to simultaneously solve for sky brightness and detector parameters, and provides accurate formal error estimates. This approach allows us to extract the calibration from the observations themselves; little or no additional information is necessary to allow full interpretation of the data. Further, this approach allows refinement and verification of detector parameters during the mission, and thus does not depend on a priori knowledge of the system or ground calibration for interpretation of images.Comment: Scheduled for ApJS, June 2000 (16 pages, 3 JPEG figures

    Probing the Universe's Tilt with the Cosmic Infrared Background Dipole

    Full text link
    Conventional interpretation of the observed cosmic microwave background (CMB) dipole is that all of it is produced by local peculiar motions. Alternative explanations requiring part of the dipole to be primordial have received support from measurements of large-scale bulk flows. A test of the two hypothesis is whether other cosmic dipoles produced by collapsed structures later than last scattering coincide with the CMB dipole. One background is the cosmic infrared background (CIB) whose absolute spectrum was measured to ~30% by the COBE satellite. Over the 100 to 500 {\mu}m wavelength range its spectral energy distribution can provide a probe of its alignment with CMB. This is tested with the COBE FIRAS dataset which is available for such a measurement because of its low noise and frequency resolution important for Galaxy subtraction. Although the FIRAS instrument noise is in principle low enough to determine the CIB dipole, the Galactic foreground is sufficiently close spectrally to keep the CIB dipole hidden. A similar analysis is performed with DIRBE, which - because of the limited frequency coverage - provides a poorer a dataset. We discuss strategies for measuring the CIB dipole with future instruments to probe the tilt and apply it to the Planck, Herschel and the proposed Pixie missions. We demonstrate that a future FIRAS-like instrument with instrument noise a factor of ~10 lower than FIRAS would make a statistically significant measurement of the CIB dipole. We find that the Planck and Herschel data sets will not allow a robust CIB dipole measurement. The Pixie instrument promises a determination of the CIB dipole and its alignment with either the CMB dipole or the dipole galaxy acceleration vector.Comment: 9 pages 9 figure

    Maser radiometer for cosmic background radiation anisotropy measurements

    Get PDF
    A maser amplifier was incorporated into a low noise radiometer designed to measure large-scale anisotropy in the 3 deg K microwave background radiation. To minimize emission by atmospheric water vapor and oxygen, the radiometer is flown in a small balloon to an altitude to 25 km. Three successful flights were made - two from Palestine, Texas and one from Sao Jose dos Campos, Brazil. Good sky coverage is important to the experiment. Data from the northern hemisphere flights has been edited and calibrated

    ARCADE 2 Measurement of the Extra-Galactic Sky Temperature at 3-90 GHz

    Get PDF
    The ARCADE 2 instrument has measured the absolute temperature of the sky at frequencies 3, 8, 10, 30, and 90 GHz, using an open-aperture cryogenic instrument observing at balloon altitudes with no emissive windows between the beam-forming optics and the sky. An external blackbody calibrator provides an {\it in situ} reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the CMB temperature. A linear model is used to compare the output of each radiometer to a set of thermometers on the instrument. Small corrections are made for the residual emission from the flight train, balloon, atmosphere, and foreground Galactic emission. The ARCADE 2 data alone show an extragalactic rise of 50±750\pm7 mK at 3.3 GHz in addition to a CMB temperature of 2.730±.0042.730\pm .004 K. Combining the ARCADE 2 data with data from the literature shows a background power law spectrum of T=1.26±0.09T=1.26\pm 0.09 [K] (ν/ν0)2.60±0.04(\nu/\nu_0)^{-2.60\pm 0.04} from 22 MHz to 10 GHz (ν0=1\nu_0=1 GHz) in addition to a CMB temperature of 2.725±.0012.725\pm .001 K.Comment: 11 pages 5 figures Submitted to Ap

    A Low Noise Thermometer Readout for Ruthenium Oxide Resistors

    Get PDF
    The thermometer and thermal control system, for the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) experiment, is described, including the design, testing, and results from the first flight of ARCADE. The noise is equivalent to about 1 Omega or 0.15 mK in a second for the RuO_2 resistive thermometers at 2.7 K. The average power dissipation in each thermometer is 1 nW. The control system can take full advantage of the thermometers to maintain stable temperatures. Systematic effects are still under investigation, but the measured precision and accuracy are sufficient to allow measurement of the cosmic background spectrum. Journal-ref: Review of Scientific Instruments Vol 73 #10 (Oct 2002)Comment: 5 pages text 7 figure

    Polarization Properties of A Multi-Moded Concentrator

    Full text link
    We present the design and performance of a non-imaging concentrator for use in broad-band polarimetry at millimeter through submillimeter wavelengths. A rectangular geometry preserves the input polarization state as the concentrator couples f/2 incident optics to a 2 pi sr detector. Measurements of the co-polar and cross-polar beams in both the few-mode and highly over-moded limits agree with a simple model based on mode truncation. The measured co-polar beam pattern is nearly independent of frequency in both linear polarizations. The cross-polar beam pattern is dominated by a uniform term corresponding to polarization efficiency 94%. After correcting for efficiency, the remaining cross-polar response is -18 dB.Comment: 9 pages including 8 figures. Accepted for publication in the Journal of the Optical Society of America
    corecore