18,602 research outputs found
Fast beam stacking using RF barriers
Two barrier RF systems were fabricated, tested and installed in the Fermilab
Main Injector. Each can provide 8 kV rectangular pulses (the RF barriers) at 90
kHz. When a stationary barrier is combined with a moving barrier, injected
beams from the Booster can be continuously deflected, folded and stacked in the
Main Injector, which leads to doubling of the beam intensity. This paper gives
a report on the beam experiment using this novel technology.Comment: 2007 Particle Accelerator Conference (PAC07
Determining Absorption, Emissivity Reduction, and Local Suppression Coefficients inside Sunspots
The power of solar acoustic waves is reduced inside sunspots mainly due to
absorption, emissivity reduction, and local suppression. The coefficients of
these power-reduction mechanisms can be determined by comparing time-distance
cross-covariances obtained from sunspots and from the quiet Sun. By analyzing
47 active regions observed by SOHO/MDI without using signal filters, we have
determined the coefficients of surface absorption, deep absorption, emissivity
reduction, and local suppression. The dissipation in the quiet Sun is derived
as well. All of the cross-covariances are width corrected to offset the effect
of dispersion. We find that absorption is the dominant mechanism of the power
deficit in sunspots for short travel distances, but gradually drops to zero at
travel distances longer than about 6 degrees. The absorption in sunspot
interiors is also significant. The emissivity-reduction coefficient ranges from
about 0.44 to 1.00 within the umbra and 0.29 to 0.72 in the sunspot, and
accounts for only about 21.5% of the umbra's and 16.5% of the sunspot's total
power reduction. Local suppression is nearly constant as a function of travel
distance with values of 0.80 and 0.665 for umbrae and whole sunspots
respectively, and is the major cause of the power deficit at large travel
distances.Comment: 14 pages, 21 Figure
Flow field predictions for a slab delta wing at incidence
Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data
Magnetically-induced reconstructions of the ground state in a few-electron Si quantum dot
We report unexpected fluctuations in the positions of Coulomb blockade peaks
at high magnetic fields in a small Si quantum dot. The fluctuations have a
distinctive saw-tooth pattern: as a function of magnetic field, linear shifts
of peak positions are compensated by abrupt jumps in the opposite direction.
The linear shifts have large slopes, suggesting formation of the ground state
with a non-zero angular momentum. The value of the momentum is found to be well
defined, despite the absence of the rotational symmetry in the dot.Comment: 5 pages, 4 figures, accepted to PR
Double-dot charge transport in Si single electron/hole transistors
We studied transport through ultra-small Si quantum dot transistors
fabricated from silicon-on-insulator wafers. At high temperatures, 4K<T<100K,
the devices show single-electron or single-hole transport through the
lithographically defined dot. At T<4K, current through the devices is
characterized by multidot transport. From the analysis of the transport in
samples with double-dot characteristics, we conclude that extra dots are formed
inside the thermally grown gate oxide which surrounds the lithographically
defined dot.Comment: 4 pages, 5 figures, to appear in Appl. Phys. Let
A Covolume Method Based on Rotated Bilinears for the Generalized Stokes Problem
We introduce a covolume or marker and cell (MAC) method for approximating the generalized Stokes problem on an axiparallel domain. Two grids are needed, the primal grid made up of rectangles and the dual grid of quadrilaterals. The velocity is approximated by nonconforming rotated bilinear elements with degrees of freedom at midpoints of rectangular elements and the pressure by piecewise constants. The error in the velocity in the Hh norm and the pressure in the L2 norm are of first order, provided that the exact velocity is in H2 and the exact pressure in H1
A CFD and FEM Approach to a Multicompartmental Poroelastic Model for CSF Production and Circulation with Applicationsin Hydrocephalus Treatment and Cerebral Oedema
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.This study introduces a Multiple-Network Poroelastic Theory (MPET) model, coupled with finite-volume based Computational fluid dynamics (CFD) for the purpose of studying, in detail, the effects of obstructing Cerebrospinal fluid (CSF) transport within an image-derived cerebral environment. The MPET representation allows the investigation of fluid transport between CSF, brain parenchyma and cerebral blood, in an integral and comprehensive manner. Key novelties of this model are the casting of multidimensional MPET in a Finite Element Method (FEM) framework, the amalgamation of anatomically accurate choroid plexuses with their feeding arteries and a simple relationship relaxing the constraint of a unique permeability for the CSF compartment. This model is used to demonstrate the impact of fourth ventricle outlet obstruction (FVOO). The implications of treating such a clinical condition with the aid of endoscopic third (ETV) and endoscopic fourth (EFV) ventriculostomy are considered. Finally, we outline the impact of the FEM based MPET framework in understanding oedema, and its ongoing evolution
- …