24,092 research outputs found
Investigation of implantable multichannel biotelemetry Semiannual report, Mar. - Aug. 1968
Multichannel, physiologically implantable telemetering system for biological measurement
OBOME - Ontology based opinion mining in UBIPOL
Ontologies have a special role in the UBIPOL system, they help to structure the policy related context, provide conceptualization for policy domain and use in the opinion mining process. In this work we presented a system called Ontology Based Opinion Mining Engine (OBOME) for analyzing a domain-specific opinion corpus by first assisting the user with the creation of a domain ontology from the corpus. We determined the polarity of opinion on the various domain aspects. In the former step, the policy domain aspect has are identified (namely which policy category is represented by the concept). This identification is supported by the policy modelling ontology, which describe the most important policy – related classes and structure. Then the most informative documents from the corpus are extracted and asked the user to create a set of aspects and related keywords using these documents. In the latter step, we used the corpus specific ontology to model the domain and extracted aspect-polarity associations using grammatical dependencies between words. Later, summarized results are shown to the user to analyze and store. Finally, in an offline process policy modeling ontology is updated
Dynamic interaction between structure and liquid propellants in a space shuttle vehicle model, part 1 Final report
Dynamic interaction between structure and liquid propellants in space shuttle vehicle model
Investigation if implantable multichannel biotelemetry systems Semiannual report, Sep. 1967 - Feb. 1968
Operation and maintenance of multichannel, physiologically implantable telemetering systems for biological measurement
Coupling between structure and liquids in a parallel stage space shuttle design
A study was conducted to determine the influence of liquid propellants on the dynamic loads for space shuttle vehicles. A parallel-stage configuration model was designed and tested to determine the influence of liquid propellants on coupled natural modes. A forty degree-of-freedom analytical model was also developed for predicting these modes. Currently available analytical models were used to represent the liquid contributions, even though coupled longitudinal and lateral motions are present in such a complex structure. Agreement between the results was found in the lower few modes
Analytical and numerical studies of central galactic outflows powered by tidal disruption events -- a model for the Fermi bubbles?
Capture and tidal disruption of stars by the supermassive black hole in the
Galactic center (GC) should occur regularly. The energy released and dissipated
by this processes will affect both the ambient environment of the GC and the
Galactic halo. A single star of super-Eddington eruption generates a subsonic
out ow with an energy release of more than erg, which still is not
high enough to push shock heated gas into the halo. Only routine tidal
disruption of stars near the GC can provide enough cumulative energy to form
and maintain large scale structures like the Fermi Bubbles. The average rate of
disruption events is expected to be ~ yr, providing
the average power of energy release from the GC into the halo of dW/dt ~
3*10 erg/s, which is needed to support the Fermi Bubbles. The GC black
hole is surrounded by molecular clouds in the disk, but their overall mass and
filling factor is too low to stall the shocks from tidal disruption events
significantly. The de facto continuous energy injection on timescales of Myr
will lead to the propagation of strong shocks in a density stratified Galactic
halo and thus create elongated bubble-like features, which are symmetric to the
Galactic midplane.Comment: 11 pages, 5 figures. The title and abstract have been changed.
Accepted by Astrophysical Journa
Quantum Gravitational Effects and Grand Unification
In grand unified theories with large numbers of fields, renormalization
effects significantly modify the scale at which quantum gravity becomes strong.
This in turn can modify the boundary conditions for coupling constant
unification, if higher dimensional operators induced by gravity are taken into
consideration. We show that the generic size of, and the uncertainty in, these
effects from gravity can be larger than the two-loop corrections typically
considered in renormalization group analyses of unification. In some cases,
gravitational effects of modest size can render unification impossible.Comment: 3 pages, to appear in the proceedings of 16th International
Conference on Supersymmetry and Unification of Fundamental Interactions
(SUSY08), Seoul, Korea, June 16-21 200
Advanced electronic technology and the design and development of an integral circuit, multi-channel telemetry system for bio-medical applications Final report, Mar. 1966 - Feb. 1969
Application of electronic technology to design and development of integrated circuit, telemetry system for biomedicin
Flavor ordering of elliptic flows at high transverse momentum
Based on the quark coalescence model for the parton-to-hadron phase
transition in ultra-relativistic heavy ion collisions, we relate the elliptic
flow () of high \pt hadrons to that of high \pt quarks. For high \pt
hadrons produced from an isospin symmetric and quark-antiquark symmetric
partonic matter, magnitudes of their elliptic flows follow a flavor ordering as
if strange quarks have a
smaller elliptic flow than light quarks. The elliptic flows of high \pt
hadrons further follow a simple quark counting rule if strange quarks and light
quarks have same high \pt spectrum and coalescence probability.Comment: 4 pages, 1 figure, revte
- …