125,261 research outputs found

    Geometric criticality between plaquette phases in integer-spin kagome XXZ antiferromagnets

    Full text link
    The phase diagram of the uniaxially anisotropic s=1s=1 antiferromagnet on the kagom\'e lattice includes a critical line exactly described by the classical three-color model. This line is distinct from the standard geometric classical criticality that appears in the classical limit (ss \to \infty) of the 2D XY model; the s=1s=1 geometric T=0 critical line separates two unconventional plaquette-ordered phases that survive to nonzero temperature. The experimentally important correlations at finite temperature and the nature of the transitions into these ordered phases are obtained using the mapping to the three-color model and a combination of perturbation theory and a variational ansatz for the ordered phases. The ordered phases show sixfold symmetry breaking and are similar to phases proposed for the honeycomb lattice dimer model and s=1/2s=1/2 XXZXXZ model. The same mapping and phase transition can be realized also for integer spins s2s \geq 2 but then require strong on-site anisotropy in the Hamiltonian.Comment: 5 pages, 2 figure

    Evidence for polarised boron in Co-B and Fe-B alloys

    Get PDF
    By exploiting the tunability of synchrotron radiation in measurements of spin-resolved photoemission it has proved possible to obtain information on the polarisation of the valence electrons of Co-B and Fe-B amorphous magnetic alloys, Both the spin-integrated and spin-resolved energy distribution curves show a marked dependence on photon energy indicating that the p states of boron hybridise with the d states of the transition metals giving rise to mixed states in the binding energy range 1 to 5 eV, The observed polarisation and spin-resolved densities of states imply that in the above restricted energy range there is a net negative polarisation of the boron states

    The Linear Correlation Coefficient vs. the Cross Term in Bose-Einstein Correlations

    Full text link
    We investigate the nature of the new cross term for Gaussian parameterizations of Bose-Einstein correlations of identical particles emitted from purely chaotic hadron sources formed by relativistic heavy ion collisions. We find that this additional parameter in the so-called Bertsch parameterization can be expressed in terms of a linear ``out-longitudinal'' correlation coefficient for emission of bosons and two already known ``radius'' parameters, RlR_l and RoR_o. The linear correlation coefficient is of kinematical nature and can be used to determine the widths of longitudinal momentum distributions.Comment: 4 pages, without inclusion of the 3 figures. For PostScript file of the manuscript including the three figures goto http://t2.lanl.gov/schlei/eprint.htm
    corecore