1,336 research outputs found
Mechanical Properties and Fracture Dynamics of Silicene Membranes
As graphene became one of the most important materials today, there is a
renewed interest on others similar structures. One example is silicene, the
silicon analogue of graphene. It share some the remarkable graphene properties,
such as the Dirac cone, but presents some distinct ones, such as a pronounced
structural buckling. We have investigated, through density functional based
tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF),
the mechanical properties of suspended single-layer silicene. We calculated the
elastic constants, analyzed the fracture patterns and edge reconstructions. We
also addressed the stress distributions, unbuckling mechanisms and the fracture
dependence on the temperature. We analysed the differences due to distinct edge
morphologies, namely zigzag and armchair
Improving vocational rehabilitation in early pshychosis:From clinical trial to guidelines and implementation
Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes
With the aim of developing a computationally inexpensive method for modeling the high-temperature reaction dynamics of transition metal catalyzed reactions we have developed a ReaxFF reactive force field in which the parameters are fitted to a substantial quantum mechanics (QM) training set, containing full reaction pathways for relevant reactions. In this paper we apply this approach to reactions involving carbon materials plus Co, Ni, and Cu atoms. We find that ReaxFF reproduces the QM reaction data with good accuracy while also reproducing the binding characteristics of Co, Ni, and Cu atoms to hydrocarbon fragments. To demonstrate the applicability of ReaxFF we performed high-temperature (1500 K) molecular dynamics simulations on a nonbranched all-carbon feedstock in the presence and absence of Co, Ni, and Cu atoms. We find that the presence of Co and Ni leads to substantial amounts of branched carbon atoms, leading eventually to the formation of carbon-nanotube-like species. In contrast, we find that under the same simulation conditions Cu leads to very little branching and leads to products with no nanotube character. In the absence of metals no branching is observed at all. These results suggest that Ni and Co catalyze the production of nanotube-like species whereas Cu does not. This is in excellent agreement with experimental observations, demonstrating that ReaxFF can provide a useful and computational tractable tool for studying the dynamics of transition metal catalytic chemistry
On the origin of the quantum-critical transition in the bilayer Heisenberg model
The bilayer Heisenberg antiferromagnet is known to exhibit a quantum-critical
transition at a particular value of the inter-layer coupling. Using a new type
of coherent state, appropriate to the special order parameter structure of the
bilayer, we map the problem onto the quantum non-linear sigma model. It is
found that the bare coupling constant diverges at the classical transition of
Chubukov and Morr, so that in any finite dimension the actual transition occurs
inside the ordered phase of the classical theory.Comment: 9 pages Revtex, no figures, submitted to Phys. Rev. Let
Evolution and mutagenesis of the mammalian excision repair gene ERCC-1
The human DNA excision repair protein ERCC-1 exhibits homology to the yeast RADIO repair protein and its longer C-terminus displays similarity to parts of the E.coli repair proteins uvrA and uvrC. To study the evolution of this 'mosaic' ERCC-1 gene we have isolated the mouse homologue. Mouse ERCC-1 harbors the same pattern of homology with RAD10 and has a comparable C-terminal extension as its human equivalent. Mutation studies show that the strongly conserved C-terminus is essential in contrast to the less conserved N-terminus which is even dispensible. The mouse ERCC-1 amino acid sequence is compatible with a previously postulated nuclear location signal and DNA-binding domain. The ERCC-1 promoter harbors a region which is highly conserved in mouse and man. Since the ERCC-1 promoter is devoid of all classical promoter elements this region may be responsible for the low constitutive level of expression in all mouse tissues and stages of embryogenesis examined
Ginzburg-Landau theory of the cluster glass phase
On the basis of a recent field theory for site-disordered spin glasses a
Ginzburg-Landau free energy is proposed to describe the low temperatures glassy
phase(s) of site-disordered magnets. The prefactors of the cubic and dominant
quartic terms change gradually along the transition line in the
concentration-temperature phase diagram. Either of them may vanish at certain
points , where new transition lines originate. The new phases are
classifiedComment: 6 pages Revtex, 5 figures. To appear in J. Phys. A. Let
Interplay of superconductivity and magnetism in strong coupling
A model is introduced describing the interplay between superconductivity and
spin-ordering. It is characterized by on-site repulsive electron-electron
interactions, causing antiferromagnetism, and nearest-neighbor attractive
interactions, giving rise to d-wave superconductivity. Due to a special choice
for the lattice, this model has a strong-coupling limit where the
superconductivity can be described by a bosonic theory, similar to the strongly
coupled negative U Hubbard model. This limit is analyzed in the present paper.
A rich mean-field phase diagram is found and the leading quantum corrections to
the mean-field results are calculated. The first-order line between the
antiferromagnetic- and the superconducting phase is found to terminate at a
tricritical point, where two second-order lines originate. At these lines, the
system undergoes a transition to- and from a phase exhibiting both
antiferromagnetic order and superconductivity. At finite temperatures above the
spin-disordering line, quantum-critical behavior is found. For specific values
of the model parameters, it is possible to obtain SO(5) symmetry involving the
spin- and the phase-sector at the tricritical point. Although this symmetry is
explicitly broken by the projection to the lower Hubbard band, it survives on
the mean-field level, and modes related to a spontaneously broken SO(5)
symmetry are present on the level of the random phase approximation in the
superconducting phase.Comment: 16 pages Revtex, 5 figure
Melting of Partially Fluorinated Graphene: From Detachment of Fluorine Atoms to Large Defects and Random Coils
The melting of fluorographene is very unusual and depends strongly on the
degree of fluorination. For temperatures below 1000 K, fully fluorinated
graphene (FFG) is thermo-mechanically more stable than graphene but at
T2800 K FFG transits to random coils which is almost twice lower
than the melting temperature of graphene, i.e. 5300 K. For fluorinated graphene
(PFG) up to 30 % ripples causes detachment of individual F-atoms around 2000 K
while for 40-60 % fluorination, large defects are formed beyond 1500 K and
beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The
results agree with recent experiments on the dependence of the reversibility of
the fluorination process on the percentage of fluorination.Comment: 16 pages, 6 figure
Genomic characterization of the human DNA excision repair gene ERCC-1.
In this report the genomic characterization of the human excision repair gene ERCC-1 is presented. The gene consists of 10 exons spread over approximately 15 kb. By means of a transfection assay the ERCC-1 promoter was confined to a region of + 170 bp upstream of the transcriptional start site. Classical promoter elements like CAAT, TATA and GC-boxes are absent from this region. Furthermore, ERCC-1 transcription is not UV-inducible. A possible explanation is provided for the previously reported alternative splicing of exon VIII. Analysis of ERCC-1 cDNA clones revealed the occurrence of differential polyadenylation which gives ERCC-1 transcripts of 3.4 and 3.8 kb in addition to the major 1.1 kb mRNA. Apparent evolutionary conservation of differential polyadenylation of ERCC-1 transcripts suggests a possible role for this mode of RNA processing in the ERCC-1 repair function
- …
