553 research outputs found
Cellular Ability to Sense Spatial Gradients in the Presence of Multiple Competitive Ligands
Many eukaryotic and prokaryotic cells can exhibit remarkable sensing ability
under small gradient of chemical compound. In this study, we approach this
phenomenon by considering the contribution of multiple ligands to the chemical
kinetics within Michaelis-Menten model. This work was inspired by the recent
theoretical findings from Bo Hu et al. [Phys. Rev. Lett. 105, 048104 (2010)],
our treatment with practical binding energies and chemical potential provides
the results which are consistent with experimental observations.Comment: 5 pages, 4 figure
Robust formation of morphogen gradients
We discuss the formation of graded morphogen profiles in a cell layer by
nonlinear transport phenomena, important for patterning developing organisms.
We focus on a process termed transcytosis, where morphogen transport results
from binding of ligands to receptors on the cell surface, incorporation into
the cell and subsequent externalization. Starting from a microscopic model, we
derive effective transport equations. We show that, in contrast to morphogen
transport by extracellular diffusion, transcytosis leads to robust ligand
profiles which are insensitive to the rate of ligand production
Morphogen Transport in Epithelia
We present a general theoretical framework to discuss mechanisms of morphogen
transport and gradient formation in a cell layer. Trafficking events on the
cellular scale lead to transport on larger scales. We discuss in particular the
case of transcytosis where morphogens undergo repeated rounds of
internalization into cells and recycling. Based on a description on the
cellular scale, we derive effective nonlinear transport equations in one and
two dimensions which are valid on larger scales. We derive analytic expressions
for the concentration dependence of the effective diffusion coefficient and the
effective degradation rate. We discuss the effects of a directional bias on
morphogen transport and those of the coupling of the morphogen and receptor
kinetics. Furthermore, we discuss general properties of cellular transport
processes such as the robustness of gradients and relate our results to recent
experiments on the morphogen Decapentaplegic (Dpp) that acts in the fruit fly
Drosophila
Self-consistent theory of reversible ligand binding to a spherical cell
In this article, we study the kinetics of reversible ligand binding to
receptors on a spherical cell surface using a self-consistent stochastic
theory. Binding, dissociation, diffusion and rebinding of ligands are
incorporated into the theory in a systematic manner. We derive explicitly the
time evolution of the ligand-bound receptor fraction p(t) in various regimes .
Contrary to the commonly accepted view, we find that the well-known
Berg-Purcell scaling for the association rate is modified as a function of
time. Specifically, the effective on-rate changes non-monotonically as a
function of time and equals the intrinsic rate at very early as well as late
times, while being approximately equal to the Berg-Purcell value at
intermediate times. The effective dissociation rate, as it appears in the
binding curve or measured in a dissociation experiment, is strongly modified by
rebinding events and assumes the Berg-Purcell value except at very late times,
where the decay is algebraic and not exponential. In equilibrium, the ligand
concentration everywhere in the solution is the same and equals its spatial
mean, thus ensuring that there is no depletion in the vicinity of the cell.
Implications of our results for binding experiments and numerical simulations
of ligand-receptor systems are also discussed.Comment: 23 pages with 4 figure
Three-kinase inhibitor combination recreates multipathway effects of a geldanamycin analogue on hepatocellular carcinoma cell death
Multitarget compounds that act on a diverse set of regulatory pathways are emerging as a therapeutic approach for a variety of cancers. Toward a more specified use of this approach, we hypothesize that the desired efficacy can be recreated in terms of a particular combination of relatively more specific (i.e., ostensibly single target) compounds. We test this hypothesis for the geldanamycin analogue 17-Allylamino-17-demethoxygeldanamycin (17AAG) in hepatocellular carcinoma cells, measuring critical phosphorylation levels that indicate the kinase pathway effects correlating with apoptotic responsiveness of the Hep3B cell line in contrast to the apoptotic resistance of the Huh7 cell line. A principal components analysis (PCA) constructed from time course measurements of seven phosphoprotein signaling levels identified modulation of the AKT, IÎşB kinase, and signal transducer and activator of transcription 3 pathways by 17AAG treatment as most important for distinguishing these cell-specific death responses. The analysis correctly suggested from 17AAG-induced effects on these phosphoprotein levels that the FOCUS cell line would show apoptotic responsiveness similarly to Hep3B. The PCA also guided the inhibition of three critical pathways and rendered Huh7 cells responsive to 17AAG. Strikingly, in all three hepatocellular carcinoma lines, the three-inhibitor combination alone exhibited similar or greater efficacy to 17AAG. We conclude that (a) the PCA captures and clusters the multipathway phosphoprotein time courses with respect to their 17AAG-induced apoptotic responsiveness and (b) we can recreate, in a more specified manner, the cellular responses of a prospective multitarget cancer therapeutic.National Institute of General Medical Sciences (U.S.). Cell Decision Processes CenterNational Cancer Institute (U.S.). Integrative Cancer Biology ProgramMassachusetts Institute of Technology. Presidential FellowshipNational Institutes of Health (U.S.
Recommended from our members
Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations
We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller–Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated
Exponential Distribution of Locomotion Activity in Cell Cultures
In vitro velocities of several cell types have been measured using computer
controlled video microscopy, which allowed to record the cells' trajectories
over several days. On the basis of our large data sets we show that the
locomotion activity displays a universal exponential distribution. Thus, motion
resulting from complex cellular processes can be well described by an
unexpected, but very simple distribution function. A simple phenomenological
model based on the interaction of various cellular processes and finite ATP
production rate is proposed to explain these experimental results.Comment: 4 pages, 3 figure
Quantitative Systems Pharmacology Approaches Applied to Microphysiological Systems (MPS): Data Interpretation and Multi-MPS Integration
Our goal in developing Microphysiological Systems (MPS) technology is to provide an improved approach for more predictive preclinical drug discovery via a highly integrated experimental/computational paradigm. Success will require quantitative characterization of MPSs and mechanistic analysis of experimental findings sufficient to translate resulting insights from in vitro to in vivo. We describe herein a systems pharmacology approach to MPS development and utilization that incorporates more mechanistic detail than traditional pharmacokinetic/pharmacodynamic (PK/PD) models. A series of studies illustrates diverse facets of our approach. First, we demonstrate two case studies: a PK data analysis and an inflammation response––focused on a single MPS, the liver/immune MPS. Building on the single MPS modeling, a theoretical investigation of a four-MPS interactome then provides a quantitative way to consider several pharmacological concepts such as absorption, distribution, metabolism, and excretion in the design of multi-MPS interactome operation and experiments.United States. Defense Advanced Research Projects Agency. Microphysiological Systems Program (W911NF-12-2-0039)National Institutes of Health (U.S.) Microphysiological Systems Program (4-UH3-TR000496-03)Massachusetts Institute of Technology. Center for Environmental Health Sciences (NIEHS Grant P30-ES002109
Enhanced immune activation linked to endotoxemia in HIV-1 seronegative MSM
This study assessed cellular and soluble markers of immune activation in HIV-1 seronegative MSM. MSM immune profiles were characterized by an increased expression of CD57 on T cells and endotoxemia. Endotoxin presence was linked to recent high-risk exposure and associated with elevated cytokine levels and decreased CD4+/CD8+ T cell ratios. Taken together, these data show elevated levels of inflammation linked to periods of endotoxemia resulting in a significantly different immune phenotype in a subset of MSM at a high risk of HIV-1 acquisition.National Institutes of Health (U.S.) (Grant P01 AI074415
- …