90 research outputs found

    Unterstützungsszenarien für einen verteilten Autorenprozeß

    Get PDF
    Zusammenfassung: Aus den Erfahrungen bei der Entwicklung eines multimedialen Lemsystems zur Lagerlogistik werden Anforderungen an eine verbesserte Unterstützung aller Phasen des Autorenprozesses abgehoben. Um die Wiederverwendbarkeit der genutzten Informationseinheiten und die notwendige Verwaltung und Verfügbarkeit großer Mengen von Informationseinheiten zu ermöglichen, wird das Konzept eines Ressourcenpools und Ressourcenmanagementsystems entwickelt, das geeignet ist, verteilt arbeitende Autorenteams zu unterstützen

    Unterstützungsszenarien für einen verteilten Autorenprozeß

    Get PDF
    Zusammenfassung: Aus den Erfahrungen bei der Entwicklung eines multimedialen Lemsystems zur Lagerlogistik werden Anforderungen an eine verbesserte Unterstützung aller Phasen des Autorenprozesses abgehoben. Um die Wiederverwendbarkeit der genutzten Informationseinheiten und die notwendige Verwaltung und Verfügbarkeit großer Mengen von Informationseinheiten zu ermöglichen, wird das Konzept eines Ressourcenpools und Ressourcenmanagementsystems entwickelt, das geeignet ist, verteilt arbeitende Autorenteams zu unterstützen

    What\u27s New in Plant Pathology: Resistance: Mystery and Misunderstandings

    Get PDF
    One of the most common management recommendations for plant diseases is the use of resistant or tolerant varieties/hybrids in your production system. However, there is common confusion on the definition and differentiation of susceptible, tolerant, and resistant varieties/hybrids from a plant pathology viewpoint. A susceptible variety/hybrid allows the pathogen to reproduce and causes significant disease development and in turn compromises the productivity of the plant (i.e., yield). A tolerant variety/hybrid allows the pathogen to reproduce and cause disease at the same or at a slightly reduced rate as a susceptible variety/cultivar; however, there is no noticeable reduction in the plant’s overall productivity. Finally, a resistant variety/hybrid limits or prevents pathogen reproduction and disease development; hence, plant productivity is little or not affected while the plant remains very productive. It is important to note that plant resistance is not plant “immunity,” where it is expected that a variety/hybrid will have NO disease. Unfortunately, immunity does not exist for the majority of plant diseases and expecting such a reaction (or lack thereof) is unrealistic. Resistance, simply, is a reduction in disease severity due to the plant’s defenses. Plants have many mechanisms for defense but do not possess immune systems comparable to our own that preclude infection and disease development

    Field Evaluation of Commercially Available Small Unmanned Aircraft Crop Spray Systems

    Get PDF
    Agricultural research and development on small unmanned aircraft systems (UAS) has been directed toward UAS enabled sensing to detect features of interest. While compelling, there is an immediate need to increase the breadth and depth of UAS-based research, to move beyond sensing, and explore active intervention in agricultural production systems. This paper is focused on the concept of crop protection through ultra-precise, unmanned aerial application systems, and seeks to initiate research discussion in this important area of opportunity. Toward this end, two different, commercially available, small Unmanned Aerial Application Systems (sUAAS - defined as less than 55 lbs. maximum take-off weight) were evaluated for operational techniques and application system efficacy under dynamic field conditions. The performance of the factory supplied spray equipment systems are documented using traditional aerial spray testing methods that have been modified for UAS enabled application systems, referred to as small Unmanned Aerial Application Systems (sUAAS). Results from initial testing protocols indicate that the factory supplied systems are quite different in design and implementation, with spray test results that reflect this difference in design, in both deposition and spray swath. Further, it is apparent that with the advent of unmanned aerial application systems, and the unique characteristics of the integrated aircraft and application systems, there is a very real need for the development of standardized sUAAS testing procedures

    Semiautomatic quality control of topographic reference datasets

    Get PDF
    The usefulness and acceptance of spatial information systems are mainly dependent on the quality of the underlying geodata. This paper describes a system for semiautomatic quality control of existing geospatial data via automatic image analysis using aerial images, high-resolution satellite imagery (IKONOS and RapidEye) and low-resolution satellite imagery (Disaster Monitoring Constellation, DMC) with mono- and multi-temporal approaches focusing on objects which cover most of the area of the topographic dataset. The goal of the developed system is to reduce the manual efforts to a minimum. We shortly review the system design and then we focus on the automatic components and their integration in a semiautomatic workflow for verification and update. A prototype of the system has been in use for several years. From the experience gained during this time we give a detailed report on the system performance in its application as well as an evaluation of the results

    What\u27s New in Plant Pathology

    Get PDF
    Changes to the Disease Management Section of the 2017 Guide for Weed, Disease, and Insect Management in Nebraska Bacterial Leaf Streak of Corn—An Emerging Disease in Nebraska and First Report in the United States Pest and Plant Diagnostic Clinic Position Change New Products … Ethos XB … Majestene Table 1. Foliar products for disease control that were updated in the 2017 Guide for Weed, Disease, and Insect Management in Nebraska Table 2. Seed treatment products for disease control that were updated in the 2017 Guide for Weed, Disease, and Insect Management in Nebraska Table 3. Biological products that were updated in the 2017 Guide for Weed, Disease, and Insect Management in Nebrask

    Population Genomics Provide Insights into the Global Genetic Structure of \u3ci\u3eColletotrichum graminicola\u3c/i\u3e, the Causal Agent of Maize Anthracnose

    Get PDF
    Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and wholegenome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure

    Breeding oat for resistance to the crown rust pathogen Puccinia coronata f. sp. avenae: achievements and prospects

    Get PDF
    Crown rust, caused by Puccinia coronata f. sp. avenae (Pca), is a significant impediment to global oat production. Some 98 alleles at 92 loci conferring resistance to Pca in Avena have been designated; however, allelic relationships and chromosomal locations of many of these are unknown. Long-term monitoring of Pca in Australia, North America and elsewhere has shown that it is highly variable even in the absence of sexual recombination, likely due to large pathogen populations that cycle between wild oat communities and oat crops. Efforts to develop cultivars with genetic resistance to Pca began in the 1950s. Based almost solely on all all-stage resistance, this has had temporary benefits but very limited success. The inability to eradicate wild oats, and their common occurrence in many oat growing regions, means that future strategies to control Pca must be based on the assumption of a large and variable prevailing pathogen population with high evolutionary potential, even if cultivars with durable resistance are deployed and grown widely. The presence of minor gene, additive APR to Pca in hexaploid oat germplasm opens the possibility of pyramiding several such genes to give high levels of resistance. The recent availability of reference genomes for diploid and hexaploid oat will undoubtedly accelerate efforts to discover, characterise and develop high throughput diagnostic markers to introgress and pyramid resistance to Pca in high yielding adapted oat germplasm.Financial support from Judith and David Coffey and family, the Grains Research and Development Corporation (GRDC: DAS00133, UOS1707-003RTX, UOS2104-001RTX) and the University of Sydney is gratefully acknowledged. Some of the unpublished research reported on was undertaken as part of a long running program on national cereal rust surveillance, conducted at the University of Sydney since 1921. EP is funded by Spanish Ministry of Science and Innovation [PID2019-104518RB-100], (AEI/FEDER, UE) and regional government through the AGR-253 group, the European Regional and Social Development Funds.Peer reviewe

    Population genomics provide insights into the global genetic structure of Colletotrichum graminicola, the causal agent of maize anthracnose.

    Get PDF
    Abstract: Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure. Importance: Plant pathogens cause significant reductions in yield and crop quality and cause enormous economic losses worldwide. Reducing these losses provides an obvious strategy to increase food production without further degrading natural ecosystems; however, this requires knowledge of the biology and evolution of the pathogens in agroecosystems. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of the maize anthracnose pathogen (Colletotrichum graminicola) in 14 countries. We found that the populations are correlated with their geographical origin and that migration between countries is ongoing, possibly caused by the movement of infected plant material. This result has direct implications for disease management because migration can cause the movement of more virulent and/or fungicide-resistant genotypes. We conclude that genetic recombination is frequent (in contrast to the traditional view of C. graminicola being mainly asexual), which strongly impacts control measures and breeding programs aimed at controlling this disease.On-line first
    corecore