8,241 research outputs found
The First Galaxies
We review our current understanding of how the first galaxies formed at the
end of the cosmic dark ages, a few 100 million years after the Big Bang. Modern
large telescopes discovered galaxies at redshifts greater than seven, whereas
theoretical studies have just reached the degree of sophistication necessary to
make meaningful predictions. A crucial ingredient is the feedback exerted by
the first generation of stars, through UV radiation, supernova blast waves, and
chemical enrichment. The key goal is to derive the signature of the first
galaxies to be observed with upcoming or planned next-generation facilities,
such as the James Webb Space Telescope or Atacama Large Millimeter Array. From
the observational side, ongoing deep-field searches for very high-redshift
galaxies begin to provide us with empirical constraints on the nature of the
first galaxies.Comment: 75 pages, 14 figures, draft version for 2011 Annual Reviews of
Astronomy and Astrophysic
Radiation Hydrodynamical Instabilities in Cosmological and Galactic Ionization Fronts
Ionization fronts, the sharp radiation fronts behind which H/He ionizing
photons from massive stars and galaxies propagate through space, were
ubiquitous in the universe from its earliest times. The cosmic dark ages ended
with the formation of the first primeval stars and galaxies a few hundred Myr
after the Big Bang. Numerical simulations suggest that stars in this era were
very massive, 25 - 500 solar masses, with H II regions of up to 30,000
light-years in diameter. We present three-dimensional radiation hydrodynamical
calculations that reveal that the I-fronts of the first stars and galaxies were
prone to violent instabilities, enhancing the escape of UV photons into the
early intergalactic medium (IGM) and forming clumpy media in which supernovae
later exploded. The enrichment of such clumps with metals by the first
supernovae may have led to the prompt formation of a second generation of
low-mass stars, profoundly transforming the nature of the first protogalaxies.
Cosmological radiation hydrodynamics is unique because ionizing photons coupled
strongly to both gas flows and primordial chemistry at early epochs,
introducing a hierarchy of disparate characteristic timescales whose relative
magnitudes can vary greatly throughout a given calculation. We describe the
adaptive multistep integration scheme we have developed for the self-consistent
transport of both cosmological and galactic ionization fronts.Comment: 6 pages, 4 figures, accepted for proceedings of HEDLA2010, Caltech,
March 15 - 18, 201
The faintest galaxies
We investigate the nature of Ultra Faint dwarf spheroidal galaxies (UF dSphs)
in a general cosmological context, simultaneously accounting for various
"classical" dSphs and Milky Way (MW) properties, including their Metallicity
Distribution Function (MDF). The model successfully reproduces both the
observed [Fe/H]-Luminosity relation and the mean MDF of UFs. According to our
results UFs are the living fossils of H2-cooling minihaloes formed at z>8.5,
i.e. before the end of reionization. They are the oldest and the most dark
matter-dominated (M/L > 100) dSphs in the MW system, with a total mass of M =
10^(7-8) Msun. The model allows to interpret the different shape of UFs and
classical dSphs MDF, along with the frequency of extremely metal-poor stars in
these objects. We discuss the "missing satellites problem" by comparing the UF
star formation efficiencies with those derived for minihaloes in the Via Lactea
simulation.Comment: To appear in the conference proceeding: "First Stars and Galaxies:
Challenges in the Next Decade" . Publisher: American Institute of Physics.
Editors: V. Bromm, D. Whalen, N. Yoshid
Detectability of the First Cosmic Explosions
We present a fully self-consistent simulation of a synthetic survey of the
furthermost cosmic explosions. The appearance of the first generation of stars
(Population III) in the Universe represents a critical point during cosmic
evolution, signaling the end of the dark ages, a period of absence of light
sources. Despite their importance, there is no confirmed detection of
Population III stars so far. A fraction of these primordial stars are expected
to die as pair-instability supernovae (PISNe), and should be bright enough to
be observed up to a few hundred million years after the big bang. While the
quest for Population III stars continues, detailed theoretical models and
computer simulations serve as a testbed for their observability. With the
upcoming near-infrared missions, estimates of the feasibility of detecting
PISNe are not only timely but imperative. To address this problem, we combine
state-of-the-art cosmological and radiative simulations into a complete and
self-consistent framework, which includes detailed features of the
observational process. We show that a dedicated observational strategy using
per cent of total allocation time of the James Webb Space
Telescope mission can provide us up to detectable PISNe per year.Comment: 9 pages, 8 figures. Minor corrections added to match published
versio
Spectroscopy of triplet Rydberg states
A combined experimental and theoretical spectroscopic study of high-, , triplet and Rydberg states in
is presented. has a large nuclear spin,
, and at high- the hyperfine interaction becomes comparable to, or
even larger than, the fine structure and singlet-triplet splittings which poses
a considerable challenge both for precision spectroscopy and for theory. For
high- states, the hyperfine shifts are evaluated
non-perturbatively taking advantage of earlier spectroscopic data for the
isotope , which results in good agreement with the
present measurements. For the states, this procedure is reversed by
first extracting from the present measurements the energies of
the states to be expected for isotopes without hyperfine
structure () which allows the determination of corrected
quantum defects in the high- limit.Comment: 13 pages, 8 figure
Clifford Gates by Code Deformation
Topological subsystem color codes add to the advantages of topological codes
an important feature: error tracking only involves measuring 2-local operators
in a two dimensional setting. Unfortunately, known methods to compute with them
were highly unpractical. We give a mechanism to implement all Clifford gates by
code deformation in a planar setting. In particular, we use twist braiding and
express its effects in terms of certain colored Majorana operators.Comment: Extended version with more detail
Probing Nonlocal Spatial Correlations in Quantum Gases with Ultra-long-range Rydberg Molecules
We present photo-excitation of ultra-long-range Rydberg molecules as a probe
of spatial correlations in quantum gases. Rydberg molecules can be created with
well-defined internuclear spacing, set by the radius of the outer lobe of the
Rydberg electron wavefunction . By varying the principal quantum number
of the target Rydberg state, the molecular excitation rate can be used to
map the pair-correlation function of the trapped gas . We
demonstrate this with ultracold Sr gases and probe pair-separation length
scales ranging from , which are on the order of the
thermal de Broglie wavelength for temperatures around 1 K. We observe
bunching for a single-component Bose gas of Sr and anti-bunching due to
Pauli exclusion at short distances for a polarized Fermi gas of Sr,
revealing the effects of quantum statistics.Comment: 6 pages, 5 figure
Negative emotional reactivity as a marker of vulnerability in the development of borderline personality disorder symptoms
Negative emotionality is a distinguishing feature of borderline personality disorder (BPD). However, this person-level characteristic has not been examined as a marker of vulnerability in the development of this disorder. The current study utilized a multi-method approach to examine the interplay between negative emotional reactivity and cumulative exposure to family adversity on the development of BPD symptoms across three years (ages 16–18) in a diverse, at-risk sample of adolescent girls (N=113). A latent variable of negative emotional reactivity was created from multiple assessments at age 16: (1) self-report, (2) emotion ratings to stressors from ecological assessments across one week, and (3) observer-rated negative affectivity during a mother-daughter conflict discussion task. Exposure to family adversity was measured cumulatively between ages 5 and 16 from annual assessments of family poverty, single parent household, and difficult life circumstances. Results from latent growth curve models demonstrated a significant interaction between negative emotional reactivity and family adversity, such that exposure to adversity strengthened the association between negative emotional reactivity and BPD symptoms. Additionally, family adversity predicted increasing BPD symptoms during late adolescence. These findings highlight negative emotional reactivity as a marker of vulnerability that ultimately increases risk for the development of BPD symptoms
- …
