2,431 research outputs found

    British literature since World War II : a selected bibliography of secondary sources with special reference to drama/theatre and narrative prose (period covered : mid-1940 to 2000)

    Get PDF
    British literature since world war II : a selected bibliography of secundary sources with special reference to drama/theatre and narrative prose (period covered : mid-1940 to 2000). Part I: Integrated alphabetical index. Part II: Specific bibliographies (as to author and subject

    Strange magnetic moment of the nucleon and SU(3) breaking: group theoretical approach

    Get PDF
    An extended group-theoretical approach to magnetic moments of the octet baryons is proposed with the aim of extracting the strange magnetic moment of the nucleon. Special attention is given to flavor SU(3) breaking. In this approach, isoscalar and isovector magnetic moments are treated separately in view of their different behavior under SU(3) breaking. We conclude that the anomalous magnetic moment associated with the flavor singlet current is small. Together with the small isoscalar anomalous magnetic moment of the nucleon, this implies suppression of the strange magnetic moment of the proton which is found to be small and positive, mu^(s) = (0.16 \pm 0.03) mu_N in units of the nuclear magneton.Comment: 6 pages, no figure, 6 tables, use REVTeX

    Extensions and further applications of the nonlocal Polyakov--Nambu--Jona-Lasinio model

    Full text link
    The nonlocal Polyakov-loop-extended Nambu--Jona-Lasinio (PNJL) model is further improved by including momentum-dependent wave-function renormalization in the quark quasiparticle propagator. Both two- and three-flavor versions of this improved PNJL model are discussed, the latter with inclusion of the (nonlocal) 't Hooft-Kobayashi-Maskawa determinant interaction in order to account for the axial U(1) anomaly. Thermodynamics and phases are investigated and compared with recent lattice-QCD results.Comment: 28 pages, 11 figures, 4 tables; minor changes compared to v1; extended conclusion

    Chiral pion-nucleon dynamics in finite nuclei: spin-isospin excitations

    Get PDF
    The nuclear density functional framework, based on chiral dynamics and the symmetry breaking pattern of low-energy QCD, is extended to the description of collective nuclear excitations. Starting from the relativistic point-coupling Lagrangian previously introduced [Nucl. Phys. A770 (2006) 1], the proton-neutron (quasiparticle) random phase approximation is formulated and applied to investigate the role of chiral pion-nucleon dynamics in excitation modes involving spin and isospin degrees of freedom, e.g. isobaric analog states and Gamow-Teller resonances.Comment: 17 pages, 6 figures, elsart class. Minor revisions, Nuclear Physics A in prin

    Developing brokered community transportation for seniors and people with disabilities

    Get PDF
    Communities are exploring ways to increase transportation coordination to improve access for seniors. One such effort is a brokered transportation system in which one agency serves as the central point of contact for ride information or actually arranging transportation for clients of multiple programs by use of a combination of transportation services. A team of social work faculty and students from the University of New Hampshire (UNH) Social Work Outreach Center, a center that provides service learning opportunities to students, collaborated with a local coalition to investigate the specific transportation needs of the region\u27s senior citizens. A total of 641 people participated in the survey. Results indicate that the study population experiences problems reliably meeting daily living needs due to inconsistent or unavailable private and public transportation options. Study findings also indicate the promising potential of brokered transportation systems, particularly for isolated seniors in rural and suburban areas with relatively limited public and private transportation options

    Multi-Kˉ\bar{K} nuclei and kaon condensation

    Full text link
    We extend previous relativistic mean-field (RMF) calculations of multi-Kˉ\bar K nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting Kˉ\bar K separation energy BKˉB_{\bar K}, as well as the associated nuclear and Kˉ\bar K-meson densities, saturate with the number κ\kappa of Kˉ\bar K mesons for κ>κsat10\kappa > \kappa_{\rm sat} \sim 10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BKˉB_{\bar K} generally does not exceed 200 MeV, it is argued that multi-Kˉ\bar K nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and Kˉ0{\bar K}^0 mesons, or protons and KK^- mesons, and study their properties.Comment: 21 pages, 8 figures, revised text and reference

    An effective thermodynamic potential from the instanton with Polyakov-loop contributions

    Full text link
    We derive an effective thermodynamic potential (Omega_eff) at finite temperature (T>0) and zero quark-chemical potential (mu_R=0), using the singular-gauge instanton solution and Matsubara formula for N_c=3 and N_f=2 in the chiral limit. The momentum-dependent constituent-quark mass is also obtained as a function of T, employing the Harrington-Shepard caloron solution in the large-N_c limit. In addition, we take into account the imaginary quark chemical potential mu_I = A_4, translated as the traced Polayakov-loop (Phi) as an order parameter for the Z(N_c) symmsetry, characterizing the confinement (intact) and deconfinement (spontaneously broken) phases. As a result, we observe the crossover of the chiral (chi) order parameter sigma^2 and Phi. It also turns out that the critical temperature for the deconfinment phase transition, T^Z_c is lowered by about (5-10)% in comparison to the case with a constant constituent-quark mass. This behavior can be understood by considerable effects from the partial chiral restoration and nontrivial QCD vacuum on Phi. Numerical calculations show that the crossover transitions occur at (T^chi_c,T^Z_c) ~ (216,227) MeV.Comment: 15 pages, 7 figure

    Dispersion in a relativistic degenerate electron gas

    Full text link
    Relativistic effects on dispersion in a degenerate electron gas are discussed by comparing known response functions derived relativistically (by Jancovici) and nonrelativistically (by Lindhard). The main distinguishing feature is one-photon pair creation, which leads to logarithmic singularities in the response functions. Dispersion curves for longitudinal waves have a similar tongue-like appearance in the relativistic and nonrelativistic case, with the main relativistic effects being on the Fermi speed and the cutoff frequency. For transverse waves the nonrelativistic treatment has a nonphysical feature near the cutoff frequency for large Fermi momenta, and this is attributed to an incorrect treatment of the electron spin. We find (with two important provisos) that one-photon pair creation is allowed in superdense plasmas, implying relatively strong coupling between transverse waves and pair creation.Comment: 17 pages, 9 figures. Submitted to Physical Review

    Chiral Dynamics of Deeply Bound Pionic Atoms

    Get PDF
    We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and the notorious "missing repulsion" in the pion-nuclear s-wave optical potential is accounted for. The connection with the in-medium change of the pion decay constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure

    Relativistic quantum plasma dispersion functions

    Full text link
    Relativistic quantum plasma dispersion functions are defined and the longitudinal and transverse response functions for an electron (plus positron) gas are written in terms of them. The dispersion is separated into Landau-damping, pair-creation and dissipationless regimes. Explicit forms are given for the RQPDFs in the cases of a completely degenerate distribution and a nondegenerate thermal (J\"uttner) distribution. Particular emphasis is placed on the relation between dissipation and dispersion, with the dissipation treated in terms of the imaginary parts of RQPDFs. Comparing the dissipation calculated in this way with the existing treatments leads to the identification of errors in the literature, which we correct. We also comment on a controversy as to whether the dispersion curves in a superdense plasma pass through the region where pair creation is allowed.Comment: 16 pages, 1 figur
    corecore