8,156 research outputs found

    Complete Genome Sequences of Zika Virus Strains Isolated from the Blood of Patients in Thailand in 2014 and the Philippines in 2012

    Get PDF
    Here, we present the complete genome sequences of two Zika virus (ZIKV) strains, Zika virus/Homo sapiens-tc/THA/2014/SV0127-14 and Zika virus/H. sapiens-tc/PHL/2012/CPC-0740, isolated from the blood of patients collected in Thailand, 2014, and the Philippines, 2012, respectively. Sequencing and phylogenetic analysis showed that both strains belong to the Asian lineage

    Galactic Cosmic Rays from Supernova Remnants: II Shock Acceleration of Gas and Dust

    Get PDF
    This is the second paper (the first was astro-ph/9704267) of a series analysing the Galactic Cosmic Ray (GCR) composition and origin. In this we present a quantitative model of GCR origin and acceleration based on the acceleration of a mixture of interstellar and/or circumstellar gas and dust by supernova remnant blast waves. We present results from a nonlinear shock model which includes (i) the direct acceleration of interstellar gas-phase ions, (ii) a simplified model for the direct acceleration of weakly charged dust grains to energies of order 100keV/amu simultaneously with the gas ions, (iii) frictional energy losses of the grains colliding with the gas, (iv) sputtering of ions of refractory elements from the accelerated grains and (v) the further shock acceleration of the sputtered ions to cosmic ray energies. The calculated GCR composition and spectra are in good agreement with observations.Comment: to appear in ApJ, 51 pages, LaTeX with AAS macros, 9 postscript figures, also available from ftp://wonka.physics.ncsu.edu/pub/elliso

    A Postscript to a Paper of A. Baker

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135153/1/blms0075.pd

    Comparison of Different Methods for Nonlinear Diffusive Shock Acceleration

    Full text link
    We provide a both qualitative and quantitative comparison among different approaches aimed to solve the problem of non-linear diffusive acceleration of particles at shocks. In particular, we show that state-of-the-art models (numerical, Monte Carlo and semi-analytical), even if based on different physical assumptions and implementations, for typical environmental parameters lead to very consistent results in terms of shock hydrodynamics, cosmic ray spectrum and also escaping flux spectrum and anisotropy. Strong points and limits of each approach are also discussed, as a function of the problem one wants to study.Comment: 26 pages, 4 figures, published version (references updated

    Measurement of the Equilibrium Emittance of an Electron-Cooled 45 MeV Proton Beam

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478
    • 

    corecore