317 research outputs found

    Possible Detection of OVI from the LMC Superbubble N70

    Full text link
    We present FUSE observations toward four stars in the LMC superbubble N70 and compare these spectra to those of four comparison targets located in nearby field and diffuse regions. The N70 sight lines show OVI 1032 absorption that is consistently stronger than the comparison sight lines by ~60%. We attribute the excess column density (logN_OVI=14.03 cm^-2) to hot gas within N70, potentially the first detection of OVI associated with a superbubble. In a survey of 12 LMC sight lines, Howk et al. (2002a) concluded that there was no correlation between ISM morphology and N_OVI. We present a reanalysis of their measurements combined with our own and find a clear difference between the superbubble and field samples. The five superbubbles probed to date with FUSE show a consistently higher mean N_OVI than the 12 non-superbubble sight lines, though both samples show equivalent scatter from halo variability. Possible ionization mechanisms for N70 are discussed, and we conclude that the observed OVI could be the product of thermal conduction at the interface between the hot, X-ray emitting gas inside the superbubble and the cooler, photoionized material making up the shell seen prominently in Halpha. We calculate the total hydrogen density n_H implied by our OVI measurements and find a value consistent with expectations. Finally, we discuss emission-line observations of OVI from N70.Comment: 9 pages in emulateapj style. Accepted to Ap

    Large Magellanic Cloud Planetary Nebula Morphology: Probing Stellar Populations and Evolution

    Get PDF
    Planetary Nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique opportunity to study both the Population and evolution of low- and intermediate-mass stars, by means of the morphological type of the nebula. Using observations from our LMC PN morphological survey, and including images available in the HST Data Archive, and published chemical abundances, we find that asymmetry in PNe is strongly correlated with a younger stellar Population, as indicated by the abundance of elements that are unaltered by stellar evolution (Ne, Ar, S). While similar results have been obtained for Galactic PNe, this is the first demonstration of the relationship for extra-galactic PNe. We also examine the relation between morphology and abundance of the products of stellar evolution. We found that asymmetric PNe have higher nitrogen and lower carbon abundances than symmetric PNe. Our two main results are broadly consistent with the predictions of stellar evolution if the progenitors of asymmetric PNe have on average larger masses than the progenitors of symmetric PNe. The results bear on the question of formation mechanisms for asymmetric PNe, specifically, that the genesis of PNe structure should relate strongly to the Population type, and by inference the mass, of the progenitor star, and less strongly on whether the central star is a member of a close binary system.Comment: The Astrophysical Journal Letters, in press 4 figure

    The Gemini Deep Deep Survey: II. Metals in Star-Forming Galaxies at Redshift 1.3<z<2

    Full text link
    The goal of the Gemini Deep Deep Survey (GDDS) is to study an unbiased sample of K<20.6 galaxies in the redshift range 0.8<z<2.0. Here we determine the statistical properties of the heavy element enrichment in the interstellar medium (ISM) of a subsample of 13 galaxies with 1.34<z<1.97 and UV absolute magnitude M_2000 < -19.65. The sample contains 38% of the total number of identified galaxies in the first two fields of the survey with z>1.3. The selected objects have colors typical of irregular and Sbc galaxies. Strong [OII] emission indicates high star formation activity in the HII regions (SFR~13-106 M_sun/yr). The high S/N composite spectrum shows strong ISM MgII and FeII absorption, together with weak MnII and MgI lines. The FeII column density, derived using the curve of growth analysis, is logN_FeII = 15.54^{+0.23}_{-0.13}. This is considerably larger than typical values found in damped Ly-alpha systems (DLAs) along QSO sight lines, where only 10 out of 87 (~11%) have logN_FeII > 15.2. High FeII column densities are observed in the z=2.72 Lyman break galaxy cB58 (logN_FeII ~ 15.25) and in gamma-ray burst host galaxies (logN_FeII ~ 14.8-15.9). Given our measured FeII column density and assuming a moderate iron dust depletion (delta_Fe ~ 1 dex), we derive an optical dust extinction A_V ~ 0.6. If the HI column density is log N(HI)<21.7 (as in 98% of DLAs), then the mean metallicity is Z/Z_sun > 0.2. The high completeness of the GDDS sample implies that these results are typical of star-forming galaxies in the 1<z<2 redshift range, an epoch which has heretofore been particularly challenging for observational programs.Comment: ApJ in press, corrected HI column density estimat

    Search for Interstellar Water in the Translucent Molecular Cloud toward HD 154368

    Full text link
    We report an upper limit of 9 x 10^{12} cm-2 on the column density of water in the translucent cloud along the line of sight toward HD 154368. This result is based upon a search for the C-X band of water near 1240 \AA carried out using the Goddard High Resolution Spectrograph of the Hubble Space Telescope. Our observational limit on the water abundance together with detailed chemical models of translucent clouds and previous measurements of OH along the line of sight constrain the branching ratio in the dissociative recombination of H_3O+ to form water. We find at the 3σ3\sigma level that no more than 30% of dissociative recombinations of H_3O+ can lead to H_2O. The observed spectrum also yielded high-resolution observations of the Mg II doublet at 1239.9 \AA and 1240.4 \AA, allowing the velocity structure of the dominant ionization state of magnesium to be studied along the line of sight. The Mg II spectrum is consistent with GHRS observations at lower spectral resolution that were obtained previously but allow an additional velocity component to be identified.Comment: Accepted by ApJ, uses aasp

    Atomic and molecular interstellar absorption lines toward the high galactic latitude stars HD~141569 and HD~157841 at ultra-high resolution

    Get PDF
    We present ultra-high resolution (0.32 km/s) spectra obtained with the 3.9m Anglo-Australian Telescope (AAT) and Ultra-High-Resolution Facility (UHRF), of interstellar NaI D1, D2, Ca II K, K I and CH absorption toward two high galactic latitude stars HD141569 and HD157841. We have compared our data with 21-cm observations obtained from the Leiden/Dwingeloo HI survey. We derive the velocity structure, column densities of the clouds represented by the various components and identify the clouds with ISM structures seen in the region at other wavelengths. We further derive abundances, linear depletions and H2 fractional abundances for these clouds, wherever possible. Toward HD141569, we detect two components in our UHRF spectra : a weak, broad component at - 15 km/s, seen only in CaII K absorption and another component at 0 km/s, seen in NaI D1, D2, Ca II K, KI and CH absorption. In the case of the HD157841 sightline, a total of 6 components are seen on our UHRF spectra in NaI D1, D2 Ca II K, K I and CH absorption. 2 of these 6 components are seen only in a single species.Comment: 16 pages, Latex, 4 figures, ps files Astrophysical Journal (in press

    Characterising the economic Proterozoic Glyde Package of the greater McArthur Basin, northern Australia

    Get PDF
    Available online 24 May 2023The greater McArthur Basin is an informal term for a Palaeo-to-Mesoproterozoic sedimentary system that consists of terranes from the McArthur Basin, Birrindudu Basin, and the Tomkinson Province. These spatially distant basins are interpreted to connect in the subsurface based on geophysical, lithological, and geochronological evidence. The coeval sedimentary units of the greater McArthur Basin were subdivided into non-genetic depositional ‘packages’ bookended by regional unconformities. In ascending order, these packages are the: Redbank, Goyder, Glyde, Favenc, and Wilton Packages. The ca. 1660–1610 Ma Glyde Package is the focus of this study and includes the economically important Barney Creek Formation, found in the McArthur Basin sensu stricto. The Barney Creek Formation hosts the world-class, sediment-hosted, Zn-Pb-Ag McArthur River deposit. Importantly, it is also a key petroleum source rock and unconventional hydrocarbon reservoir, containing Australia’s geologically oldest oil and gas discoveries and forming a part of the McArthur Petroleum Supersystem. Consequently, identifying chronostratigraphically similar units elsewhere in the greater McArthur Basin is important for explorers in finding analogous economic resources. In situ Rb–Sr geochronological results of the Barney Creek Formation shales sourced from borehole LV09001 yielded ages of 1634 ± 59 Ma and 1635 ± 67 Ma. Shale samples from Fraynes Formation in borehole Manbulloo S1 were dated at 1630 ± 57 Ma and 1636 ± 42 Ma using the same approach. These ages are in good agreement with U–Pb ages of tuffaceous layers from the same units, suggesting that they represent their early burial histories and not secondary, post-depositional events. These results indicate that the Fraynes Formation and the Barney Creek Formation are direct chronostratigraphic equivalents, with ages within analytical error of each other. In addition to the geochronological similarities, the ÎŽ13Ccarb, 87Sr/86Sr, and ÎŽ88/86Sr isotopic constraints from both units also display parallel geochemical fingerprints up-section. These include a positive ÎŽ13Ccarb excursion of ∌2.0 ‰, a trend towards more crustal-dominated 87Sr/86Sr ratios, and a negative ÎŽ88/86Sr excursion of ∌-0.25 ‰. These findings further support the application of isotopic chemostratigraphy as a powerful tool to correlate distal carbonaceous rocks in the basin system. Importantly, these geochemical fingerprints also show that the McArthur Group and the Limbunya Group experienced similar changes in palaeoenvironments during the evolution of the basin system. However, trace element data collated in this study indicates that they may have recorded different, heterogeneous palaeoredox histories. Geochemical models based on redox-sensitive trace elements V and Mo suggest that the Fraynes Formation sustained a much more euxinic water column as opposed to the Barney Creek Formation. These differences may have implications for the accumulation and preservation of base metals and hydrocarbons within the sediment.Darwinaji Subarkah, Alan S. Collins Juraj FarkaĆĄ, Morgan L. Blades, Sarah E. Gilbert, Amber J.M. Jarrett, Maxwell M. Bullen, William Giulian

    Tuning chemical short-range order for stainless behavior at reduced chromium concentrations in multi-principal element alloys

    Full text link
    Single-phase multi-principal element alloys (MPEAs) hold promise for improved mechanical properties as a result of multiple operative deformation modes. However, the use of many of these alloys in structural applications is limited as a consequence of their poor aqueous corrosion resistance. Here we introduce a new approach for significantly improving the passivation behavior of alloys by tuning the chemical short-range order (CSRO) parameter. We show that the addition of only 0.03 to 0.06 mole fraction of Al to a (FeCoNi)0.9Cr0.1 alloy changed both the magnitude and sign of the Cr-Cr CSRO parameter resulting in passivation behavior similar to 304L stainless steel containing twice the amount of Cr. Our analysis is based on comparing electrochemical measures of the kinetics of passive film formation with CSRO characterizations using time-of-flight neutron scattering, cluster expansion methods, density functional theory and Monte Carlo techniques. Our findings are interpreted within the framework of a recently proposed percolation theory of passivation that examines how selective dissolution of the non-passivating alloy components and CSRO results in excellent passive films at reduced levels of the passivating component.Comment: 19 pages, 4 Figures, 1 Table, 49 references. Also contains Supplemental Material: 20 pages 17 supplemental figures, 4 supplemental table

    Hubble Space Telescope Observations of the Associated Absorption Systems in Q0122+0338

    Full text link
    We have studied a spectrum of Q0122+0338 (z = 1.202) obtained by the FOS on board HST. We present the analysis of three associated absorption systems at z = 1.207, 1.199 and 1.166. The most complex of these at z = 1.207 shows strong absorption from the highly ionized transitions of Lyman alpha, Lyman beta, N V, O VI, Si III, Si IV, and possibly P V. We derive minimal ionic column densities and compare them with those predicted from numerical photoionization models. We find that conditions in the absorbing gas are consistent with an absorber with metallicity twice solar and a total absorbing column density of N(H) = 2*10^19 cm^2. The kinematics of the absorption lines in the z = 1.207 system suggest that a correlation exists between the relative velocity and the creation ionization potential energy for each transition. This is evidence that a complex, multi-component absorber exists. Althought the location of the absorber is uncertain, we consider the origin of this absorption system using the available data and discuss how the high-ionization, and high-metallicity indicate that the absorber may be intrinsic to Q0122+0338.Comment: 16 pages, 5 figures, uses emulateapj.sty, accepted for publication in Ap
    • 

    corecore